首页> 外文期刊>Expert Systems with Application >A novel trend based SAX reduction technique for time series
【24h】

A novel trend based SAX reduction technique for time series

机译:基于趋势的基于趋势的SAX减少时间序列的新技术

获取原文
获取原文并翻译 | 示例

摘要

We propose in this paper a novel trend based SAX reduction technique called SAX_CP, which captures the trends in a time series based on abrupt change points and on data variation. SAX_CP discriminates between time series by adopting a variable segment size that depends on the time series' change points. Furthermore, SAX_CP is endowed with a new distance that takes into account the possible correlations between time series. The proposed distance enjoys interesting features such as lower bounding the Euclidean distance and better Tightness of Lower Bound (TLB) compared to the so far published SAX based distances. We conduct comprehensive experiments on classification based on SAX_CP and other related SAX based reduction techniques. The results show that SAX_CP enjoys better classification results compared to these techniques with a small reduction cost. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们在本文中提出了一种新的基于趋势的SAX减少技术,称为SAX_CP,该技术可基于突变点和数据变化来捕获时间序列中的趋势。 SAX_CP通过采用取决于时间序列变化点的可变段大小来区分时间序列。此外,考虑到时间序列之间可能的相关性,赋予SAX_CP一个新的距离。与迄今发布的基于SAX的距离相比,建议的距离具有有趣的功能,例如较低的欧几里德距离和更好的下界紧密度(TLB)。我们基于SAX_CP和其他相关的基于SAX的归约技术对分类进行了全面的实验。结果表明,与这些技术相比,SAX_CP具有更好的分类结果,并且降低了成本。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号