首页> 外文期刊>Expert systems with applications >A liver fibrosis staging method using cross-contrast network
【24h】

A liver fibrosis staging method using cross-contrast network

机译:一种使用交叉对比度网络的肝纤维化分期方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we proposes a cross-contrast neural network (CCNN) for liver fibrosis classification. This method consists of two main parts. The first part extracts feature and gets the cross probability maps for utilizing the implicit contrast information among the inputs. The second part measures the similarity between two maps using the modified information based similarity (IBS) theory. IBS theory is a statistical method quantifies similarity between symbols and have been proved valid in many areas (Yang, Hseu, Yien, Goldberger, & Peng, 2003), but it has not been combined with neural network so far. CCNN combines the advantages of statistical analysis and convolutional neural networks, fitting the problem that the number of medical images is relatively small for traditional deep neural network to train. We apply CCNN on a 34-person dataset (23/11 for train/test) and the experimental results (shown in Table 3) clearly demonstrate the efficiency of the method. The highest accuracy is achieved on binary classification of F3 vs. F4, F0 vs.F3 and F1 vs. F3, which are 98.33%. The accuracy of no-to-moderate fibrosis (F0-2) vs. advanced fibrosis (F3-4) and 5 categories is 93.33% and 71.11% relatively. We find that most classification error occurs with F2. After removing F2, the classification accuracy of 4 categories rises to 84.44%. (C) 2019 Published by Elsevier Ltd.
机译:在本文中,我们提出了一种用于肝纤维化分类的交叉对比神经网络(CCNN)。该方法包括两个主要部分。第一部分提取特征并获得用于利用输入之间的隐式对比信息的横款概率图。第二部分使用基于修改的信息的相似性(IBS)理论测量两种地图之间的相似性。 IBS理论是一种统计方法量化符号之间的相似性,并且在许多领域被证明是有效的(杨,Hseu,Yien,Goldberger,&Peng,2003),但它迄今尚未与神经网络相结合。 CCNN结合了统计分析和卷积神经网络的优势,拟合了医学图像的数量相对较小的问题,对于传统的深层神经网络训练。我们在34人数据集(火车/测试23/11)上应用CCNN,实验结果(如表3所示)清楚地证明了该方法的效率。在F3,F0 Vs.F3和F1与F1的二进制分类上实现了最高精度,其为F3为98.33%。无间纤维化(F0-2)与晚期纤维化(F3-4)和5个类别的准确性相对93.33%和71.11%。我们发现F2发生了大多数分类错误。去除F2后,4类分类的分类精度上升至84.44%。 (c)2019年由elestvier有限公司发布

著录项

  • 来源
    《Expert systems with applications》 |2019年第9期|124-131|共8页
  • 作者单位

    Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ Meical Sch Dept Radiol Nanjing Drum Tower Hosp Affiliated Hosp Nanjing 210008 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convolutional neural network; IBS theory; Liver fibrosis; Cross-contrast;

    机译:卷积神经网络;IBS理论;肝纤维化;交叉对比;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号