首页> 外文期刊>Expert Systems with Application >A new efficient hybrid algorithm for large scale multiple traveling salesman problems
【24h】

A new efficient hybrid algorithm for large scale multiple traveling salesman problems

机译:大规模多重旅行商问题的一种新型高效混合算法

获取原文
获取原文并翻译 | 示例

摘要

Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical problems in the real life than TSP. For solving the MTSP with multiple depots, the requirement of minimum and maximum number of cities that each salesman should visit, a hybrid algorithm called ant colony-partheno genetic algorithms (AC-PGA) is provided by combining partheno genetic algorithms (PGA) and ant colony algorithms (ACO). The main idea in this paper is to divide the variables into two parts. In detail, it exploits PGA to comprehensively search the best value of the first part variables and then utilizes ACO to accurately determine the second part variables value. For comparative analysis, PGA, improved PGA (IPGA), two-part wolf pack search (TWPS), artificial bee colony (ABC) and invasive weed optimization (IWO) algorithms are adopted to solve MTSP and validated with publicly available TSPLIB benchmarks. The results of comparative experiments show that AC-PGA is sufficiently effective in solving large scale MTSP and has better performance than the existing algorithms. (C) 2019 Elsevier Ltd. All rights reserved.
机译:多个旅行推销员问题(MTSP)不仅是旅行推销员问题(TSP)的概括,而且比TSP更适合于对现实生活中的实际问题进行建模。为了解决具有多个仓库的MTSP,每个销售员应访问的最小和最大城市数量的要求,结合了单性遗传算法(PGA)和蚂蚁,提供了一种称为蚁群-帕特诺遗传算法(AC-PGA)的混合算法殖民地算法(ACO)。本文的主要思想是将变量分为两部分。具体来说,它利用PGA全面搜索第一部分变量的最佳值,然后利用ACO准确确​​定第二部分变量的值。为了进行比较分析,采用了PGA,改进的PGA(IPGA),两部分狼群搜索(TWPS),人工蜂群(ABC)和侵入性杂草优化(IWO)算法来求解MTSP,并通过公开的TSPLIB基准进行了验证。比较实验的结果表明,AC-PGA在解决大规模MTSP方面足够有效,并且比现有算法具有更好的性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号