首页> 外文期刊>Expert Systems with Application >Evidential two-step tree species recognition approach from leaves and bark
【24h】

Evidential two-step tree species recognition approach from leaves and bark

机译:叶子和树皮的证据性两步树种识别方法

获取原文
获取原文并翻译 | 示例

摘要

The contribution of this paper is twofold. First, this paper aims at developing an intelligent system that emulates the decision-making ability of a botanist expert in the recognition of tree species from their leaves and bark. The main challenges of this recognition problem are related to the high diversity of trees in nature, the interspecies similarity and the intra-species variability. Therefore, similarities between species cause several confusions during recognition. The proposed decision system is designed to solve this complex problem of tree species recognition by reasoning with knowledge sets where the inference engine is based on belief functions theory, which reduces confusion between species and achieves greater accuracy. Secondly, this paper proposes a practical solution that can be embedded in the user's smartphone without any need for an internet connection. Therefore, our approach is adapted for smartphone limits, i.e. limits related to memory and computation capacity. Once in nature, everybody should appreciate the idea of having a mobile application that reflects the skills and know-how of a botanist. Building an application to make the potential of tree species recognition accessible and easy to use is a challenging problem. From methodological perspectives, the suggested method is a two-step recognition approach that identifies the leaf in a first step and refines the results using the bark in the second step. In fact, the first step is used to reduce the dimensionality of the problem through the identification of a subset of most probable species. The second step is performed using a modified evidential k Nearest Neighbors (EkNN) algorithm that recognizes the bark from the output of the first step. A set of experiments on real-world data is presented in order to study the accuracy of the proposed solution against existing ones. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文的贡献是双重的。首先,本文旨在开发一种智能系统,该系统可以模仿植物学家从树叶和树皮中识别树种的决策能力。这种识别问题的主要挑战涉及自然界中树木的高度多样性,种间相似性和种内变异性。因此,物种之间的相似性会导致识别过程中的一些混乱。所提出的决策系统旨在通过知识集推理来解决树木物种识别的复杂问题,其中推理机基于信念函数理论,从而减少了树种之间的混淆并提高了准确性。其次,本文提出了一种实用的解决方案,可以将其嵌入用户的智能手机中,而无需互联网连接。因此,我们的方法适用于智能手机限制,即与内存和计算能力有关的限制。一旦进入自然界,每个人都应该欣赏拥有一个能够反映植物学家的技能和专有技术的移动应用程序的想法。建立一个使树种识别潜力可访问和易于使用的应用程序是一个具有挑战性的问题。从方法论的角度来看,建议的方法是一种两步识别方法,该方法在第一步中识别叶子,并在第二步中使用树皮细化结果。实际上,第一步是通过识别最可能物种的子集来减少问题的范围。第二步使用修改后的证据k最近邻(EkNN)算法执行,该算法从第一步的输出中识别树皮。为了研究所提出的解决方案相对于现有解决方案的准确性,提出了一组针对实际数据的实验。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号