首页> 外文期刊>Expert Systems with Application >A two-phase approach for unexpected pattern mining
【24h】

A two-phase approach for unexpected pattern mining

机译:意外模式挖掘的两阶段方法

获取原文
获取原文并翻译 | 示例

摘要

A typical mining task is to retrieve all frequent patterns from a multi-dimensional dataset. Those patterns give us a basic idea of how the data look like and the hidden inherent regularities. However, this is only useful for an unfamiliar dataset, while for datasets that are analyzed periodically, "unexpected" patterns are more interesting (e.g., some customers decided to subscribe to long-term deposits despite the burden of housing loan). In this paper, we propose a new mining job, unexpected mining, which targets at retrieving frequent patterns that are not valid in a reference dataset, but are significant enough in a specific subgroup. Given a reference dataset, we step by step generate all unexpected patterns for all subgroups. We extend existing mining approaches to support the new mining job efficiently. In particular, our scheme consists of an offline process and an online process. Offline process generates candidate patterns and builds an index table. Online process can retrieve unexpected patterns from user-defined subgroups and a given support. Experiments on real datasets show that our approach can find interesting patterns and is very efficient compared to existing approaches. (C) 2019 Elsevier Ltd. All rights reserved.
机译:典型的挖掘任务是从多维数据集中检索所有频繁模式。这些模式使我们对数据的外观和隐藏的固有规律有了基本的了解。但是,这仅对不熟悉的数据集有用,而对于定期分析的数据集,“意外”模式更为有趣(例如,尽管有住房贷款负担,一些客户还是决定订阅长期存款)。在本文中,我们提出了一项新的挖掘工作,即意外挖掘,其目标是检索在参考数据集中无效但在特定子组中足够重要的频繁模式。给定参考数据集,我们将逐步生成所有子组的所有意外模式。我们扩展了现有的采矿方法,以有效地支持新的采矿工作。特别地,我们的方案包括离线过程和在线过程。离线过程生成候选模式并构建索引表。在线过程可以从用户定义的子组和给定的支持中检索意外的模式。在真实数据集上的实验表明,我们的方法可以找到有趣的模式,并且与现有方法相比非常有效。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号