首页> 外文期刊>Expert Systems with Application >Gaussian mutational chaotic fruit fly-built optimization and feature selection
【24h】

Gaussian mutational chaotic fruit fly-built optimization and feature selection

机译:高斯变异混沌果蝇的构建优化与特征选择

获取原文
获取原文并翻译 | 示例

摘要

To cope with the potential shortcomings of classical fruit fly optimization algorithm (FOA), a new version of FOA with Gaussian mutation operator and the chaotic local search strategy (MCFOA) is proposed in this research. First, the Gaussian mutation operator is introduced into the basic FOA to avoid premature convergence and improve the exploitative tendencies in the algorithm (MFOA). Then, chaotic local search method is adopted for enhancing the local searching ability of the swarm of agents (CFOA). To substantiate the efficiency of three proposed methods, a comprehensive comparison has been completed using 23 benchmark functions with different characteristics. The best version of FOA among them is the MCFOA, which is extensively compared with the notable swarm-intelligence algorithms like bat algorithm (BA), particle swarm optimization algorithm (PSO), and several advanced FOA-based methods such as chaotic FOA (CIFOA), improved FOA (IFOA), multi-swarm FOA (swarm_MFOA) and differential evolution based FOA (DFOA). Numerical results show that two embedded strategies will effectively boost the performance of FOA for optimization tasks. In addition, MCFOA is also applied to feature selection problems. The results also prove that MCFOA can obtain the optimal classification accuracy. (C) 2019 Elsevier Ltd. All rights reserved.
机译:为了解决经典果蝇优化算法(FOA)的潜在缺点,提出了一种新的具有高斯变异算子和混沌局部搜索策略(FOA)的FOA。首先,将高斯变异算子引入到基本FOA中,以避免过早收敛并改善算法(MFOA)的利用趋势。然后,采用混沌的局部搜索方法来增强代理商群(CFOA)的局部搜索能力。为了证实三种建议方法的效率,已使用23个具有不同特征的基准功能完成了全面比较。其中FOA的最佳版本是MCFOA,与著名的群智能算法(如蝙蝠算法(BA),粒子群优化算法(PSO))以及几种基于FOA的高级方法(如混沌FOA(CIFOA))进行了广泛的比较。 ),改进的FOA(IFOA),多群FOA(swarm_MFOA)和基于差分进化的FOA(DFOA)。数值结果表明,两种嵌入式策略将有效提高FOA用于优化任务的性能。此外,MCFOA还适用于特征选择问题。结果还证明,MCFOA可以获得最佳的分类精度。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号