首页> 外文期刊>Expert Systems with Application >Robust weighted SVD-type latent factor models for rating prediction
【24h】

Robust weighted SVD-type latent factor models for rating prediction

机译:稳健的加权SVD型潜在因子模型,用于评分预测

获取原文
获取原文并翻译 | 示例

摘要

Recommending system is a popular tool in many commercial or social platforms which finds interesting products for users based on their preference history. Predicting the ratings of items, such as movies, plays an essential role in the recommending system. In this context, we develop a new type of latent factor models by attaching weights to the entries of the incomplete ratings matrix. The weights are computed after estimating the user/item mean errors caused by the basic SVD model under the low-rank assumption on the ratings matrix. To accelerate the optimization process of our proposed models and other existing SVD-type models, a special design of the initial guess is suggested. In the experiments on real-world datasets, the proposed weighted models outperform other SVD-type methods, and the usage of the special initial guess improves the optimization significantly, obtaining lower MRSEs within fixed number of iterations, in comparison with the random initial guess. Furthermore, artificially noised datasets are taken to evaluate the methods, where the weighted models still perform better than other SVD-type models, implying their effectiveness and robustness in noised environment. (C) 2019 Elsevier Ltd. All rights reserved.
机译:推荐系统是许多商业或社交平台中流行的工具,它可以根据用户的偏好历史为用户找到有趣的产品。预测电影等项目的收视率在推荐系统中起着至关重要的作用。在这种情况下,我们通过将权重附加到不完整评级矩阵的条目中来开发一种新型的潜在因子模型。在评估矩阵的低等级假设下,估算基本SVD模型引起的用户/项目平均误差后,计算权重。为了加快我们提出的模型和其他现有SVD类型模型的优化过程,建议对初始猜测进行特殊设计。在实际数据集上的实验中,所提出的加权模型优于其他SVD类型的方法,并且与随机初始猜测相比,特殊初始猜测的使用显着改善了优化,在固定迭代次数内获得了较低的MRSE。此外,采用人工噪声数据集来评估这些方法,其中加权模型仍然比其他SVD类型的模型表现更好,这表明它们在噪声环境中的有效性和鲁棒性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号