首页> 外文期刊>Expert Systems with Application >Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems
【24h】

Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems

机译:集成(规则,神经网络)和案例,以在专家系统中进行知识表示和推理

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an approach that integrates symbolic rules, neural networks and cases. To achieve it, we integrate a kind of hybrid rules, called neurules, with cases. Neurules integrate symbolic rules with the Adaline neural unit. In the integration, neurules are used to index cases representing their exceptions. In this way, the accuracy of the neurules is improved. On the other hand, due to neurule-based efficient inference mechanism, conclusions can be reached more efficiently. In addition, neurule-based inferences can be performed even if some of the inputs are unknown, in contrast to symbolic rule-based inferences. Furthermore, an existing symbolic rule-base with indexed exception cases can be converted into a neurule-base with corresponding indexed exception cases. Finally, empirical data can be used as a knowledge source, which facilitates knowledge acquisition. We also present a new high-level categorization of the approaches integrating rule-based and case-based reasoning.
机译:在本文中,我们提出了一种整合符号规则,神经网络和案例的方法。为了实现这一点,我们将一种称为案例的混合规则集成到案例中。神经元将符号规则与Adaline神经单元集成在一起。在集成中,神经元用于索引代表其异常的案例。这样,神经元的准确性得以提高。另一方面,由于基于神经元的有效推理机制,可以更有效地得出结论。另外,与基于符号规则的推理相反,即使某些输入未知,也可以执行基于神经元的推理。此外,可以将具有索引例外情况的现有符号规则库转换为具有相应索引例外情况的神经元库。最后,经验数据可以用作知识源,这有助于知识获取。我们还提出了一种新的高级分类方法,将基于规则和基于案例的推理相结合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号