首页> 外文期刊>Expert Systems with Application >Expert system based on artificial neural networks for content-based image retrieval
【24h】

Expert system based on artificial neural networks for content-based image retrieval

机译:基于人工神经网络的基于内容的图像检索专家系统

获取原文
获取原文并翻译 | 示例

摘要

Clustering technique is essential for fast retrieval in large database. In this paper, new image clustering technique based on artificial neural networks is proposed for content-based image retrieval. Fuzzy-ART mechanism maps high-dimensional input features into the output neuron. Joint HSV histogram and average entropy computed from gray-level co-occurrence matrices in the localized image region is employed as input feature elements. Original Fuzzy-ART suffers unnecessary increase of the number of output neurons when the noise input is presented. Modified Fuzzy-ART mechanism resolves the problem by differently updating the committed node and uncommitted node, and checking the vigilance test again. To show the validity of the proposed algorithm, experiment results on image clustering performance and comparison with original Fuzzy-ART are presented in terms of recall rates.
机译:集群技术对于在大型数据库中快速检索至关重要。针对基于内容的图像检索,提出了一种新的基于人工神经网络的图像聚类技术。 Fuzzy-ART机制将高维输入特征映射到输出神经元。根据局部图像区域中的灰度共现矩阵计算的联合HSV直方图和平均熵用作输入特征元素。当出现噪声输入时,原始的Fuzzy-ART会不必要地增加输出神经元的数量。改进的Fuzzy-ART机制通过不同地更新已提交节点和未提交节点并再次检查警戒测试来解决该问题。为了显示该算法的有效性,从召回率的角度给出了图像聚类性能的实验结果,并与原始的Fuzzy-ART进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号