首页> 外文期刊>Expert Systems with Application >Modeling human behavior in user-adaptive systems: Recent advances using soft computing techniques
【24h】

Modeling human behavior in user-adaptive systems: Recent advances using soft computing techniques

机译:在用户自适应系统中模拟人类行为:使用软计算技术的最新进展

获取原文
获取原文并翻译 | 示例

摘要

Adaptive Hypermedia systems are becoming more important in our everyday activities and users are expecting more intelligent services from them. The key element of a generic adaptive hypermedia system is the user model. Traditional machine learning techniques used to create user models are usually too rigid to capture the inherent uncertainty of human behavior. In this context, soft computing techniques can be used to handle and process human uncertainty and to simulate human decision-making. This paper examines how soft computing techniques, including fuzzy logic, neural networks, genetic algorithms, fuzzy clustering and neuro-fuzzy systems, have been used, alone or in combination with other machine learning techniques, for user modeling from 1999 to 2004. For each technique, its main applications, limitations and future directions for user modeling are presented. The paper also presents guidelines that show which soft computing techniques should be used according to the task implemented by the application.
机译:自适应超媒体系统在我们的日常活动中变得越来越重要,用户期望它们提供更多的智能服务。通用自适应超媒体系统的关键要素是用户模型。用于创建用户模型的传统机器学习技术通常过于僵化,无法捕获人类行为固有的不确定性。在这种情况下,软计算技术可用于处理和处理人类不确定性并模拟人类决策。本文研究了从1999年到2004年如何将软计算技术(包括模糊逻辑,神经网络,遗传算法,模糊聚类和神经模糊系统)单独或与其他机器学习技术结合使用来进行用户建模。介绍了该技术,其主要应用,局限性以及用户建模的未来方向。本文还提供了指南,该指南显示了应根据应用程序实现的任务使用哪些软计算技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号