首页> 外文期刊>Expert systems with applications >Recognition of early phase of atherosclerosis using principles component analysis and artificial neural networks from carotid artery Doppler signals
【24h】

Recognition of early phase of atherosclerosis using principles component analysis and artificial neural networks from carotid artery Doppler signals

机译:使用主成分分析和人工神经网络从颈动脉多普勒信号识别动脉粥样硬化的早期

获取原文
获取原文并翻译 | 示例

摘要

Atherosclerosis means thickening and hardening of the arteries, which has dramatic effects on blood pressure, resistance and blood flow. Since angiography is invasive and has a relatively high cost, non-invasive ultrasonic Doppler sonography is generally recommended to diagnose of athersosclerosis. In this study, we have employed the sonograms depicted from Autoregressive (AR) modeling, Principles component analysis (PCA) for data reduction of Doppler sonograms and artificial neural networks (ANN) in order to distinguish between atherosclerosis and healthy subjects. The fuzzy appearance of the carotid artery Doppler signals makes physicians suspicious about the existence of diseases and causes false diagnosis. Our technique gets around this problem using ANN to decide and assist the physician to make the final judgment in confidence. The stated results show that training time and processing complexity were reduced using PCA-ANN architecture however the proposed method can make an effective interpretation and ANN classified Doppler signals successfully.
机译:动脉粥样硬化意味着动脉的增厚和硬化,这对血压,抵抗力和血流有显着影响。由于血管造影是侵入性的并且具有相对较高的成本,因此通常推荐使用非侵入性超声多普勒超声来诊断动脉粥样硬化。在这项研究中,我们采用了自回归(AR)建模,主成分分析(PCA)进行多普勒超声图数据还原和人工神经网络(ANN)绘制的超声图,以区分动脉粥样硬化和健康受试者。颈动脉多普勒信号的模糊外观使医生对疾病的存在产生怀疑,并导致错误的诊断。我们的技术使用ANN来解决这个问题,以决定并协助医生做出自信的最终判断。结果表明,使用PCA-ANN架构可以减少训练时间和处理复杂度,但是该方法可以有效地解释和成功地将ANN分类的多普勒信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号