首页> 外文期刊>Expert systems with applications >Assessing users' product-specific knowledge for personalization in electronic commerce
【24h】

Assessing users' product-specific knowledge for personalization in electronic commerce

机译:评估用户特定于产品的知识,以实现电子商务中的个性化

获取原文
获取原文并翻译 | 示例

摘要

While many electronic commerce (EC) companies are adopting one-to-one marketing approaches using various personalization technologies to make their products and services unique for the purpose of attracting and retaining customers and improving their completion edges in the EC ecosystem, which, nevertheless, has low entrance barriers for new players to join and further intensify the competition, none or few of them consider a fundamental issue—the user's product-specific knowledge. Our research proposed to add this new domain of the customer's knowledge on appropriate target products into the personalization process as a part of the overall EC strategy for businesses. In this paper, we present our initial design for assessing the user's product-specific knowledge using the proposed innovative method for detecting it directly in a non-intrusive way without asking users to answer or fill out any types of questionnaires. Our method is based on customer's on-line navigation behaviors by analyzing their navigation patterns through pre-trained artificial neural networks. An empirical study designed for a case of EC store selling digital cameras was conducted in our research to prove the concept, and a good preliminary result was derived from the study. For the purpose of comparing the performances between the conventional approach of using questionnaire and the proposed innovative approach of navigation pattern mining, a questionnaire based approach for evaluating the user's product-specific knowledge was designed and incorporated into our knowledge level assessment system (KLAS). Our study result shows that although the pure questionnaire-based KLAS is intrusive and may not be accepted by some users, for those users willing to complete the questionnaire, the proposed navigation pattern approach can be combined with the questionnaire-based approach to create a hybrid KLAS which has a significantly improved accuracy rate in detecting the customer's product knowledge level.
机译:尽管许多电子商务(EC)公司采用各种个性化技术采用一对一的营销方法,使其产品和服务具有独特性,目的是吸引和留住客户并改善其在EC生态系统中的优势,尽管如此,对于新玩家来说,进入并进一步加剧竞争的门槛很低,没有一个或几个人将基本问题视为用户的特定产品知识。我们的研究建议将针对适当目标产品的客户知识的这一新领域添加到个性化流程中,作为企业整体EC战略的一部分。在本文中,我们提出了使用建议的创新方法评估用户的产品特定知识的初始设计,该创新方法可以以非介入方式直接检测用户的特定知识,而无需用户回答或填写任何类型的问卷。我们的方法基于客户的在线导航行为,方法是通过预先训练的人工神经网络分析其导航模式。在我们的研究中,针对EC商店销售数码相机的案例设计了一项实证研究,以证明这一概念,并从研究中得出了良好的初步结果。为了比较传统的使用调查表的方法和建议的导航模式挖掘方法的性能,设计了一种基于调查表的方法来评估用户的产品特定知识,并将其纳入我们的知识水平评估系统(KLAS)。我们的研究结果表明,尽管基于纯问卷的KLAS具有侵入性,可能不被某些用户接受,但对于那些愿意填写问卷的用户,建议的导航模式方法可以与基于问卷的方法结合使用,以创建一个混合模型KLAS在检测客户的产品知识水平方面具有显着提高的准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号