首页> 外文期刊>Expert Systems with Application >Mining place-matching patterns from spatio-temporal trajectories using complex real-world places
【24h】

Mining place-matching patterns from spatio-temporal trajectories using complex real-world places

机译:使用复杂的现实世界地点从时空轨迹中挖掘地点匹配模式

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a place-matching pattern mining approach that detects place-matching patterns from raw spatio-temporal GPS trajectories using real-world places from OpenStreetMap. The approach begins by annotating raw trajectory recordings as either stopping or moving. It then groups contiguously stopping entries into so-called stop episodes; each of which is then associated with a number of potential stop place candidates from the real-world place repository OpenStreetMap. As each stop episode may have multiple place candidates, the proposed approach uses a Hidden Markov Model to probabilistically match each sequence of stop episodes to its most likely sequence of visited real-world places. The result of this stop episode formulation and place-matching is that the original trajectories are transformed into a discrete, greatly simplified, and more semantically meaningful sequence of place visitations. This format enables the last step of our approach where frequent itemsets and sequential patterns are extracted using traditional approaches. Experimental results with real and synthetic datasets demonstrate our approach's running time performance, robustness to GPS noise, dataset compression, and matching accuracy. Additionally, a case study using human trajectories from the real-world Geolife dataset reveals many interesting and seemingly real patterns. These findings suggest the general validity and applicability of our approach as a place-matching trajectory data mining approach. Crown Copyright (C) 2019 Published by Elsevier Ltd. All rights reserved.
机译:本文介绍了一种位置匹配模式挖掘方法,该方法使用OpenStreetMap中的真实位置从原始时空GPS轨迹中检测位置匹配模式。该方法首先将原始轨迹记录注释为停止或移动。然后,它将连续停止的条目分组为所谓的停止事件;然后,每一个都与来自真实世界地点存储库OpenStreetMap的许多潜在的停靠地点候选者相关联。由于每个停靠点可能有多个候选地点,因此建议的方法使用隐马尔可夫模型将每个停靠点序列概率性地与其最可能访问的实际地点序列进行匹配。这种停止情节公式化和位置匹配的结果是,原始轨迹被转换为离散的,大大简化的,且语义上更有意义的位置访问序列。这种格式实现了我们方法的最后一步,即使用传统方法提取频繁项集和顺序模式。真实和合成数据集的实验结果证明了我们的方法的运行时间性能,对GPS噪声的鲁棒性,数据集压缩以及匹配精度。此外,使用来自真实地球生命数据集的人类轨迹进行的案例研究揭示了许多有趣且看似真实的模式。这些发现表明我们的方法作为位置匹配轨迹数据挖掘方法的一般有效性和适用性。 Crown版权所有(C)2019,由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号