首页> 外文期刊>Expert Systems with Application >Hierarchical trajectory clustering for spatio-temporal periodic pattern mining
【24h】

Hierarchical trajectory clustering for spatio-temporal periodic pattern mining

机译:时空周期性模式挖掘的层次轨迹聚类

获取原文
获取原文并翻译 | 示例

摘要

Spatio-temporal periodic pattern mining is to find temporal regularities for interesting places. Many real world spatio-temporal phenomena present sequential and hierarchical nature. However, traditional spatio-temporal periodic pattern mining ignores the consideration of sequence, and fails to take into account inherent hierarchy. This paper proposes a hierarchical trajectory clustering based periodic pattern mining that overcomes the two common drawbacks from traditional approaches: hierarchical reference spots and consideration of sequence. We propose a new trajectory clustering algorithm which considers semantic spatio-temporal information such as direction, speed and time based on Traclus and present comparative experimental results with three popular clustering methods: Kernel function, Grid-based, and Traclus. We further extend the proposed trajectory clustering to hierarchical clustering with the use of the single linkage approach to generate a hierarchy of reference spots. Experimental results reveal various hierarchical periodic patterns, and demonstrate that our algorithm outperforms traditional reference spot detection algorithms. (C) 2017 Elsevier Ltd. All rights reserved.
机译:时空周期性模式挖掘是为有趣的地方找到时间规律。许多现实世界的时空现象都呈现出顺序和层次的性质。但是,传统的时空周期性模式挖掘忽略了序列的考虑,并且没有考虑固有的层次结构。本文提出了一种基于层次轨迹聚类的周期性模式挖掘方法,该方法克服了传统方法的两个常见缺陷:层次参考点和顺序考虑。我们提出了一种新的轨迹聚类算法,该算法基于Traclus考虑了语义时空信息,例如方向,速度和时间,并使用三种流行的聚类方法(内核函数,基于网格和Traclus)给出了对比实验结果。我们通过使用单链接方法生成参考点的层次结构,进一步将提出的轨迹聚类扩展到层次聚类。实验结果揭示了各种分层的周期性模式,并证明了我们的算法优于传统的参考点检测算法。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号