首页> 外文期刊>Expert Systems with Application >A recommender approach based on customer emotions
【24h】

A recommender approach based on customer emotions

机译:基于客户情绪的推荐方法

获取原文
获取原文并翻译 | 示例

摘要

On electronic commerce websites, the recommender is typically based on a global evaluation of the product by the customer. This preference information is interesting, but not sufficient. Our approach is based on the assumption of the inevitable role of emotions in product appreciation. Our purpose is to evaluate the performance of the approach based on emotions and to compare it with the traditional approach of unique preference. The first step is to collect data. In the first part of the study, we simulate a database of customer/product/evaluation to test our method and to study the influence of matrix sparsity. The second part of the study is applied to real data. The product considered to illustrate the approach is film, a product for which preferences are mostly guided by emotions. We collect the data via an online questionnaire, given a sparse matrix of evaluation (people have not seen all the films). A use case, which consist in making spontaneous recommendations to customers on the basis of their previous ratings, is described. Considering that the behavior of a customer is not random, the notion of user profiles in terms of preference and emotions is introduced. The proposed recommender is tested by removing preference data and predicting it based on the rest of the database. A performance criterion is calculated, measuring the relevance of the proposed products. The results show that (1) the matrix sparsity does not have a significant influence on the results and robustness of our method and (2) consideration of customers' emotional assessments of products improves recommendation performance. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在电子商务网站上,推荐器通常基于客户对产品的全局评估。此首选项信息很有趣,但还不够。我们的方法基于情感在产品欣赏中不可避免的作用的假设。我们的目的是评估基于情感的方法的性能,并将其与独特偏好的传统方法进行比较。第一步是收集数据。在研究的第一部分中,我们模拟了一个客户/产品/评估数据库,以测试我们的方法并研究矩阵稀疏性的影响。研究的第二部分适用于真实数据。被认为可以说明这种方法的产品是电影,该产品的喜好主要由情感决定。给定稀疏的评估矩阵(人们没有看完所有电影),我们通过在线调查表收集数据。描述了一个用例,该用例包括根据客户以前的评级向客户提出自发建议。考虑到顾客的行为不是随机的,因此引入了关于偏好和情绪的用户简档的概念。通过删除首选项数据并根据数据库的其余部分对其进行预测来测试建议的推荐程序。计算性能标准,测量建议产品的相关性。结果表明,(1)矩阵稀疏度对方法的结果和鲁棒性没有显着影响;(2)考虑客户对产品的情感评估可提高推荐效果。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号