首页> 外文期刊>Expert Systems with Application >Taxi dispatching strategies with compensations
【24h】

Taxi dispatching strategies with compensations

机译:有偿出租车调度策略

获取原文
获取原文并翻译 | 示例

摘要

Urban mobility efficiency is of utmost importance in big cities. Taxi vehicles are key elements in daily traffic activity. The advance of ICT and geo-positioning systems has given rise to new opportunities for improving the efficiency of taxi fleets in terms of waiting times of passengers, cost and time for drivers, traffic density, CO2 emissions, etc., by using more informed, intelligent dispatching. Still, the explicit spatial and temporal components, as well as the scale and, in particular, the dynamicity of the problem of pairing passengers and taxis in big towns, render traditional approaches for solving standard assignment problem useless for this purpose, and call for intelligent approximation strategies based on domain specific heuristics. Furthermore, taxi drivers are often autonomous actors and may not agree to participate in assignments that, though globally efficient, may not be sufficently beneficial for them individually. This paper presents a new heuristic algorithm for taxi assignment to customers that considers taxi reassignments if this may lead to globally better solutions. In addition, as such new assignments may reduce the expected revenues of individual drivers, we propose an economic compensation scheme to make individually rational drivers agree to proposed modifications in their assigned clients. We carried out a set of experiments, where several commonly used assignment strategies are compared to three different instantiations of our heuristic algorithm. The results indicate that our proposal has the potential to reduce customer waiting times in fleets of autonomous taxis, while being also beneficial from an economic point of view. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在大城市中,城市出行效率至关重要。出租车是日常交通活动中的关键要素。信息通信技术和地理定位系统的进步为通过使用更多信息的出租车候车时间,驾驶员的成本和时间,交通密度,二氧化碳排放量等带来了提高出租车车队效率的新机会,智能调度。尽管如此,显式的时空成分,以及规模,尤其是大城镇中的乘客和出租车配对问题的动态性,使得解决标准分配问题的传统方法无法用于此目的,并要求智能化。基于领域启发式算法的近似策略。此外,出租车司机通常是自主行为者,可能不同意参加虽然全球性高效但可能不足以对他们个人有利的任务。本文为客户提供了一种新的启发式出租车分配启发式算法,该算法考虑了出租车分配问题,如果这可能会导致全球范围内更好的解决方案。此外,由于此类新任务可能会减少单个驾驶员的预期收入,因此我们提出了一项经济补偿计划,以使各个理性驾驶员都同意他们所分配客户中的拟议修改。我们进行了一组实验,将几种常用的分配策略与我们的启发式算法的三种不同实例进行了比较。结果表明,我们的建议有可能减少无人驾驶出租车车队的客户等待时间,同时从经济角度来看也是有益的。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号