首页> 外文期刊>Expert Systems with Application >Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification
【24h】

Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification

机译:基于神经网络,1型和2型模糊系统的2导心律失常分类的混合模型

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an approach using computational intelligence methods to form a hybrid model as a classification method for 2-lead cardiac arrhythmias. The hybridization of methods can increase the performance in a system and take advantage of the benefits offered by such techniques in solving complex problems. The interpretation of electrocardiograms is a useful task for physicians, but when it comes to reviewing more than 24 h of information, it becomes a laborious task for them. For this reason, the design a computational model that helps in such a task is very useful for the timely medical diagnosis. The hybrid model is build using artificial neural networks and fuzzy logic. Training and testing of the hybrid model was with the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) arrhythmia database. The heartbeats are preprocessed to improve results of classification. Ten different classes of normal and arrhythmia signals for building the hybrid model are considered. We used two electrode signals or leads included in the MIT-BIH arrhythmia database, MLII and V1, V2, or V3 as second electrode signal. The hybrid model is composed by two basic module units, as described below. A basic module unit to perform the classification for each signal lead is used. Each basic module unit is composed of three different classifiers based on the following models: fuzzy KNN algorithm, multilayer perceptron with gradient descent and momentum (MLP-GDM), and multilayer perceptron with scaled conjugate gradient backpropagation (MLP-SCG). The outputs from the classifiers are combined using a fuzzy system for integration of results. We designed two fuzzy systems, Mamdani type-1 fuzzy system (type-1 FIS) and an interval type-2 fuzzy system (IT2FIS). The reason is to perform a comparison between type-1 FIS and IT2FIS in the hybrid model. We have obtained best results in the classification rate using IT2FIS instead of type-1 FIS in the basic units. Finally, a type-1 FIS is used to determine the global classification for the 2 basic units in hybrid model. We obtained a good classification rate in each basic module unit, 92.90% and 92.70% of classification rate for basic modules unit 1 and unit 2 respectively. Finally, we obtained a 93.80% when used type-1 FIS and 94.20% of classification rate used IT2FIS combining both basic module units. In the results presented, we improve the global classification in proposed hybrid model combining neural networks and fuzzy logic used both signal lead included in MIT-BIH arrhythmia database. The proposed hybrid model maybe extended to use multi-lead arrhythmia classification using other databases that contain 12 leads to be able to make a complete medical diagnosis. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文介绍了一种使用计算智能方法来形成混合模型的方法,作为2导心律失常的分类方法。方法的混合可以提高系统的性能,并利用这些技术提供的好处来解决复杂的问题。心电图的解释对医生而言是一项有用的任务,但是当要检查超过24小时的信息时,对他们而言则是一项艰巨的任务。因此,设计有助于完成此类任务的计算模型对于及时的医学诊断非常有用。混合模型是使用人工神经网络和模糊逻辑构建的。混合模型的训练和测试是在麻省理工学院和贝斯以色列医院(MIT-BIH)心律失常数据库中进行的。对心跳进行预处理以改善分类结果。考虑了用于构建混合模型的十种不同类别的正常和心律不齐信号。我们使用了MIT-BIH心律失常数据库中包含的两个电极信号或导线MLII和V1,V2或V3作为第二电极信号。混合模型由两个基本模块单元组成,如下所述。使用一个基本模块单元对每个信号线进行分类。每个基本模块单元由基于以下模型的三个不同的分类器组成:模糊KNN算法,具有梯度下降和动量的多层感知器(MLP-GDM)和具有比例共轭梯度反向传播的多层感知器(MLP-SCG)。使用模糊系统对分类器的输出进行组合,以对结果进行积分。我们设计了两个模糊系统,Mamdani 1型模糊系统(1型FIS)和区间2型模糊系统(IT2FIS)。原因是要在混合模型中对Type-1 FIS和IT2FIS进行比较。使用IT2FIS代替基本单位中的类型1 FIS,我们在分类率上获得了最佳结果。最后,使用类型1 FIS确定混合模型中2个基本单元的全局分类。我们在每个基本模块单元中获得了良好的分类率,基本模块单元1和单元2的分类率分别为92.90%和92.70%。最后,结合两个基本模块单元,使用1型FIS可获得93.80%的分类率,使用IT2FIS可获得94.20%的分类率。在提出的结果中,我们改进了提出的混合模型的全局分类,该模型将神经网络和模糊逻辑结合在一起使用,两者都包含在MIT-BIH心律失常数据库中。所提出的混合模型可以扩展到使用包含其他12个导联的其他数据库的多导联心律失常分类,从而能够进行完整的医学诊断。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号