首页> 外文期刊>Expert systems with applications >Automated barcode recognition for smart identification and inspection automation
【24h】

Automated barcode recognition for smart identification and inspection automation

机译:条形码自动识别,可实现智能识别和检测自动化

获取原文
获取原文并翻译 | 示例

摘要

Barcodes have been widely used in many industrial products for automatic identification in data collection and inventory control purposes. It is well known that in many stores laser bar-code readers are used at check-out counters. However, there is a major constraint when this tool is used. That is, unlike traditional camera-based picturing, the distance between the laser reader (sensor) and the target object is close to zero when the reader is applied. This may result in inconvenience in inspection automation because the human operator has to manipulate either the sensor or the objects. For the purpose of in-store or inspection automation, the human operator needs to be removed from the process, i.e. a robot with visual capability is required to play an important role in such a system. Moreover, an automated system is required to find, locate and decode barcodes on various document images even with low resolution compared with laser barcode readers (about 15,000 dots per inch) and can handle damaged bar codes. This paper proposes a smart barcode detection and recognition system (SBDR) based on fast hierarchical Hough transform (HHT). The back-propagation neural network (BPNN) is selected as a powerful tool to perform the recognition process. The paper presents an effective method to utilize the specific graphic features of barcodes for positioning and recognition purposes even in case of distorted barcodes. The first step the system has to perform is to locate the position and orientation of the barcode in the required material document image. Secondly, the proposed system has to segment the barcode. Finally, a trained back-propagation neural network is used to perform the barcode recognition task. Experiments have been conducted to corroborate the efficiency of the proposed method.
机译:条码已在许多工业产品中广泛用于自动识别,以进行数据收集和库存控制。众所周知,在许多商店中,结帐柜台都使用激光条形码阅读器。但是,使用此工具时存在主要限制。也就是说,与传统的基于相机的图片不同,当应用阅读器时,激光阅读器(传感器)与目标对象之间的距离接近于零。这可能会导致检查自动化的不便,因为操作员必须操纵传感器或物体。为了店内或检查自动化的目的,需要将操作员从过程中删除,即要求具有视觉能力的机器人在这种系统中起重要作用。此外,与激光条形码读取器(每英寸约15,000点)相比,即使分辨率较低,也需要一种自动系统来查找,定位和解码各种文档图像上的条形码,并且该系统可以处理损坏的条形码。本文提出了一种基于快速分层霍夫变换(HHT)的智能条形码检测与识别系统(SBDR)。选择反向传播神经网络(BPNN)作为执行识别过程的强大工具。本文提出了一种有效的方法,即使条形码变形,也可以利用条形码的特定图形特征进行定位和识别。系统必须执行的第一步是在所需的物料凭证图像中定位条形码的位置和方向。其次,所提出的系统必须分割条形码。最后,训练有素的反向传播神经网络用于执行条形码识别任务。已经进行实验以证实所提出方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号