首页> 外文期刊>Expert systems with applications >Decoupled control using neural network-based sliding-mode controller for nonlinear systems
【24h】

Decoupled control using neural network-based sliding-mode controller for nonlinear systems

机译:基于神经网络的滑模控制器的非线性系统解耦控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an adaptive neural network sliding-mode controller design approach with decoupled method is proposed. The decoupled method provides a simple way to achieve asymptotic stability for a class of fourth-order nonlinear system. The adaptive neural sliding-mode control system is comprised of neural network (NN) and a compensation controller. The NN is the main regulator controller, which is used to approximate an ideal computational controller. The compensation controller is designed to compensate for the difference between the ideal computational controller and the neural controller. An adaptive methodology is derived to update weight parts of the NN. Using this approach, the response of system will converge faster than that of previous reports. The simulation results for the cart-pole systems and the ball-beam system are presented to demonstrate the effectiveness and robustness of the method. In addition, the experimental results for seesaw system are given to assure the robustness and stability of system.
机译:本文提出了一种具有解耦方法的自适应神经网络滑模控制器设计方法。解耦方法为一类四阶非线性系统提供了一种渐近稳定性的简单方法。自适应神经滑模控制系统由神经网络(NN)和补偿控制器组成。 NN是主要的调节器控制器,用于逼近理想的计算控制器。补偿控制器设计用于补偿理想计算控制器和神经控制器之间的差异。推导了一种自适应方法,以更新NN的权重部分。使用这种方法,系统的响应将比以前的报告收敛得更快。给出了车杆系统和球梁系统的仿真结果,以证明该方法的有效性和鲁棒性。另外,给出了跷跷板系统的实验结果,以确保系统的鲁棒性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号