首页> 外文期刊>Expert systems with applications >Prediction of pricing and hedging errors for equity linked warrants with Gaussian process models
【24h】

Prediction of pricing and hedging errors for equity linked warrants with Gaussian process models

机译:使用高斯过程模型预测股票挂钩认股权证的定价和套期错误

获取原文
获取原文并翻译 | 示例

摘要

Gaussian process (GP) model is a Bayesian kernel-based learning machine. In this paper, we propose a GP model with a various mixed kernel for pricing and hedging ELWs (equity linked warrants) traded at K.RX with predictive distribution. We experiment with daily market data relevant to KOSPI200 call ELWs from March 2006 to July 2006, comparing the performance of the GP model with those of various neural network (NN) models to show its effectiveness. The applied NN models contain early stopping, regularized NN, and bagging. The proposed GP model shows that its forecast capability outperforms those of the three NN models in terms of both pricing and hedging errors, thereby generating consistent results.
机译:高斯过程(GP)模型是基于贝叶斯内核的学习机。在本文中,我们提出了一个具有各种混合内核的GP模型,用于在K.RX上以预测分布对价格和对冲ELW(股权挂钩凭单)进行定价和对冲。我们对2006年3月至2006年7月与KOSPI200呼叫ELW相关的每日市场数据进行了实验,比较了GP模型与各种神经网络(NN)模型的性能,以显示其有效性。应用的NN模型包含提前停止,正则化NN和装袋。提出的GP模型表明,在定价和对冲误差方面,其预测能力均优于三个NN模型,从而产生了一致的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号