首页> 外文期刊>Expert systems with applications >Generating fuzzy rules from training instances for fuzzy classification systems
【24h】

Generating fuzzy rules from training instances for fuzzy classification systems

机译:从训练实例中为模糊分类系统生成模糊规则

获取原文
获取原文并翻译 | 示例

摘要

In recent years, many methods have been proposed to generate fuzzy rules from training instances for handling the Iris data classification problem. In this paper, we present a new method to generate fuzzy rules from training instances for dealing with the Iris data classification problem based on the attribute threshold value α, the classification threshold value β and the level threshold value γ, where α∈[0,1 ], β∈[0,1 ] and γ∈[0,1 ]. The proposed method gets a higher average classification accuracy rate than the existing methods.
机译:近年来,已经提出了许多方法来从训练实例生成模糊规则以处理虹膜数据分类问题。在本文中,我们提出了一种基于属性阈值α,分类阈值β和级别阈值γ的,从训练实例生成模糊规则以处理虹膜数据分类问题的新方法,其中α∈[0, 1],β∈[0,1]和γ∈[0,1]。与现有方法相比,该方法具有更高的平均分类准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号