首页> 外文OA文献 >Fuzzy system identification by generating and evolutionary optimizing fuzzy rule bases consisting of relevant fuzzy rules
【2h】

Fuzzy system identification by generating and evolutionary optimizing fuzzy rule bases consisting of relevant fuzzy rules

机译:通过生成和进化优化相关规则组成的模糊规则库来识别模糊系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One approach forsystem identification among many othersis the fuzzy identification approach. The advantage of this approach compared to other analytical approaches is, that it is not necessary to make an assumption for the model to be used for the identification. In addition, the fuzzy approach can handle nonlinearities easier than analytical approaches. The Fuzzy-ROSA method is a method for data-based generation of fuzzy rules. This is the first step of a two step identification process. The second step is the optimization of the remaining free parameters, i.e. the composition of the rule base and the linguistic terms, to further improve the quality of the model and obtain small interpretable rule bases. In this paper, a new evolutionary strategy for the optimization of the linguistic terms of the output variable is presented. The effectiveness of the two step fuzzy identification is demonstrated on the benchmark problem 'kin dataset' of the Delve dataset repository and the results are compared to analytical and neural network approaches.
机译:模糊识别方法是众多系统识别方法之一。与其他分析方法相比,此方法的优势在于,无需为要用于识别的模型进行假设。另外,模糊方法比分析方法更容易处理非线性。 Fuzzy-ROSA方法是一种基于数据的模糊规则生成方法。这是两步识别过程的第一步。第二步是优化剩余的自由参数,即规则库和语言术语的组成,以进一步提高模型的质量并获得小的可解释规则库。本文提出了一种新的进化策略,用于优化输出变量的语言术语。在Delve数据集存储库的基准问题“亲缘数据集”上证明了两步模糊识别的有效性,并将结果与​​分析和神经网络方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号