首页> 外文期刊>Expert systems with applications >Decision-level fusion based on wavelet decomposition for induction motor fault diagnosis using transient current signal
【24h】

Decision-level fusion based on wavelet decomposition for induction motor fault diagnosis using transient current signal

机译:基于小波分解的决策级融合基于暂态电流信号的异步电动机故障诊断

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose and implement a decision-level fusion model by combining the information of multi-level wavelet decomposition for fault diagnosis of induction motor using transient stator current signal. Firstly, the start-up transient current signals are collected from different faulty motors. Then signal preprocessing is conducted containing smoothing and subtracting to reduce the influence of line frequency in transient current signals. Next, we employ discrete wavelet transform technique to decompose the preprocessed signals into different frequency ranges of products, and then features are extracted from decomposed detail components. Finally, two decision-level fusion strategies, Bayesian belief fusion and multi-agent fusion, are employed. That is, fault features are classified using several classifiers and generated decisions are fused using a specific fusion algorithm. The proposed approach is evaluated by an experiment of fault diagnosis for induction motors. Experiment results show that excellent diagnosis performance can be obtained.
机译:本文结合多级小波分解的信息,提出并实现了决策级融合模型,用于基于暂态定子电流信号的异步电机故障诊断。首先,从不同的故障电动机收集启动瞬态电流信号。然后进行信号预处理,包括平滑和减法,以减小瞬态电流信号中线频的影响。接下来,我们采用离散小波变换技术将预处理后的信号分解为不同频率的乘积,然后从分解后的细节分量中提取特征。最后,采用了两种决策级融合策略:贝叶斯信念融合和多主体融合。即,使用几个分类器对故障特征进行分类,并使用特定的融合算法对生成的决策进行融合。通过对异步电动机进行故障诊断的实验对提出的方法进行了评估。实验结果表明,可以获得良好的诊断性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号