首页> 外文期刊>Expert Systems with Application >An application to transient current signal based induction motor fault diagnosis of Fourier-Bessel exoansion and simDlified fuzzv ARTMAP
【24h】

An application to transient current signal based induction motor fault diagnosis of Fourier-Bessel exoansion and simDlified fuzzv ARTMAP

机译:基于瞬态电流信号的傅立叶-贝塞尔展开和简化模糊ARTMAP异步电动机故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The start-up transient signals have been widely used for fault diagnosis of induction motor because they can reveal early defects in the development process, which are not easily detected with the signals in the steady state operation. However, transient signals are non-linear and contain multi components which need a suitable technique to process and identify the fault pattern. In this paper, the fault diagnosis prob-lem of induction motor is conducted by a data driven framework where the Fourier-Bessel (FB) expan-sion is used as a tool to decompose transient current signal into series of single components. For each component, the statistical features in the time and the frequency domains are extracted to represent the characteristics of motor condition. The high dimensionality of the feature set is solved by generalized discriminant analysis (GDA) implementation to decrease the computational complexity of classification. In the meantime, with the aid of GDA, the separation of the feature clusters is increased, which enables the more classification accuracy to be achieved. Finally, the reduced dimensional features are used for classifier to perform the fault diagnosis results. The classifier used in this framework is the simplified fuzzy ARTMAP (SFAM) which belongs to a special class of neural networks (NNs) and provides a lower training time in comparison to'other traditional NNs. The proposed framework is validated with transient current signals from an induction motor under different conditions including bowed rotor, broken rotor bar, eccentricity, faulty bearing, mass unbalance and phase unbalance. Additionally, this paper provides the comparative performance of (i) SFAM and support vector machine (SVM), (ii) SVM in the framework and SVM combined with wavelet transform in previous studies, (iii) the use of FB decomposition and Hil-bert transform decomposition. The results show that the proposed diagnosis framework is capable of sig-nificantly improving the classification accuracy.
机译:启动瞬态信号已被广泛用于感应电动机的故障诊断,因为它们可以揭示开发过程中的早期缺陷,而这些缺陷在稳态操作中不易被检测到。然而,瞬态信号是非线性的并且包含多个分量,这需要适当的技术来处理和识别故障模式。在本文中,感应电动机的故障诊断问题是通过数据驱动框架来进行的,其中使用傅里叶-贝塞尔(FB)扩展作为工具将瞬态电流信号分解为一系列单个分量。对于每个组件,提取时域和频域中的统计特征以表示电动机状况的特征。通过广义判别分析(GDA)实施解决了特征集的高维性,从而降低了分类的计算复杂性。同时,借助GDA可以增加特征簇的分离,从而实现更高的分类精度。最后,将降维特征用于分类器以执行故障诊断结果。在该框架中使用的分类器是简化的模糊ARTMAP(SFAM),它属于神经网络(NN)的特殊类别,与其他传统NN相比,训练时间更短。所提出的框架通过感应电动机在不同条件下的瞬态电流信号进行了验证,这些条件包括弓形转子,转子棒断裂,偏心率,轴承故障,质量不平衡和相位不平衡。此外,本文还提供了以下方面的比较性能:(i)SFAM和支持向量机(SVM),(ii)框架中的SVM和先前研究中结合小波变换的SVM,(iii)FB分解和Hil-bert的使用变换分解。结果表明,所提出的诊断框架能够显着提高分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号