首页> 外文期刊>Expert systems with applications >AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction
【24h】

AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction

机译:AptaCDSS-E:基于分类器集成的临床决策支持系统,可预测心血管疾病水平

获取原文
获取原文并翻译 | 示例

摘要

Conventional clinical decision support systems are generally based on a single classifier or a simple combination of these models, showing moderate performance. In this paper, we propose a classifier ensemble-based method for supporting the diagnosis of cardiovascular disease (CVD) based on aptamer chips. This AptaCDSS-E system overcomes conventional performance limitations by utilizing ensembles of different classifiers. Recent surveys show that CVD is one of the leading causes of death and that significant life savings can be achieved if precise diagnosis can be made. For CVD diagnosis, our system combines a set of four different classifiers with ensembles. Support vector machines and neural networks are adopted as base classifiers. Decision trees and Bayesian networks are also adopted to augment the system. Four aptamer-based biochip data sets including CVD data containing 66 samples were used to train and test the system. Three other supplementary data sets are used to alleviate data insufficiency. We investigated the effectiveness of the ensemble-based system with several different aggregation approaches by comparing the results with single classifier-based models. The prediction performance of the AptaCDSS-E system was assessed with a cross-validation test. The experimental results show that our system achieves high diagnosis accuracy ( > 94%) and comparably small prediction difference intervals ( < 6%), proving its usefulness in the clinical decision process of disease diagnosis. Additionally, 10 possible biomarkers are found for further investigation.
机译:常规的临床决策支持系统通常基于单个分类器或这些模型的简单组合,显示出中等的性能。在本文中,我们提出了一种基于适配子的基于分类器集成的方法来支持心血管疾病(CVD)的诊断。该AptaCDSS-E系统通过利用不同分类器的集合克服了常规性能限制。最近的调查表明,CVD是导致死亡的主要原因之一,如果可以进行精确的诊断,则可以节省大量生命。对于CVD诊断,我们的系统将一组四个不同的分类器结合在一起。支持向量机和神经网络被用作基本分类器。决策树和贝叶斯网络也被用来扩充系统。四个基于适配子的生物芯片数据集(包括包含66个样品的CVD数据)用于训练和测试系统。其他三个补充数据集用于缓解数据不足。我们通过将结果与基于单个分类器的模型进行比较,研究了具有几种不同聚合方法的基于集成系统的有效性。 AptaCDSS-E系统的预测性能通过交叉验证测试进行了评估。实验结果表明,我们的系统具有较高的诊断准确度(> 94%)和相对较小的预测差异间隔(<6%),证明了其在疾病诊断的临床决策过程中的实用性。此外,发现了10种可能的生物标记物,需要进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号