首页> 外文期刊>Expert systems with applications >Integration of independent component analysis and neural networks for ECG beat classification
【24h】

Integration of independent component analysis and neural networks for ECG beat classification

机译:独立成分分析和神经网络的集成,用于心电图搏动分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a scheme to integrate independent component analysis (ICA) and neural networks for electrocardiogram (ECG) beat classification. The ICA is used to decompose ECG signals into weighted sum of basic components that are statistically mutual independent. The projections on these components, together with the RR interval, then constitute a feature vector for the following classifier. Two neural networks, including a probabilistic neural network (PNN) and a back-propagation neural network (BPNN), are employed as classifiers. ECG samples attributing to eight different beat types were sampled from the MIT-BIH arrhythmia database for experiments. The results show high classification accuracy of over 98% with either of the two classifiers. Between them, the PNN shows a slightly better performance than BPNN in terms of accuracy and robustness to the number of ICA-bases. The impressive results prove that the integration of independent component analysis and neural networks, especially PNN, is a promising scheme for the computer-aided diagnosis of heart diseases based on ECG.
机译:在本文中,我们提出了一种整合独立成分分析(ICA)和神经网络的心电图(ECG)搏动分类的方案。 ICA用于将ECG信号分解为统计上相互独立的基本成分的加权和。这些分量上的投影以及RR间隔就构成了以下分类器的特征向量。包括概率神经网络(PNN)和反向传播神经网络(BPNN)的两个神经网络用作分类器。从MIT-BIH心律失常数据库中取样归因于八种不同心跳类型的ECG样本进行实验。结果表明,使用两个分类器中的任何一个,分类精度都超过98%。在它们之间,就基于ICA的数目的准确性和鲁棒性而言,PNN的性能比BPNN略好。令人印象深刻的结果证明,独立成分分析和神经网络(尤其是PNN)的集成是基于ECG的计算机辅助心脏病诊断的有希望的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号