首页> 外文期刊>Expert systems with applications >A novel method for shelf life prediction of a packaged moisture sensitive snack using multilayer perceptron neural network
【24h】

A novel method for shelf life prediction of a packaged moisture sensitive snack using multilayer perceptron neural network

机译:一种使用多层感知器神经网络预测包装的水敏零食的保质期的新方法

获取原文
获取原文并翻译 | 示例

摘要

A novel method for shelf life prediction was established for a packaged moisture sensitive snack. Artificial neural network (ANN) based on multilayer perceptrons (MLP) with back propagation algorithm was developed to predict the shelf life of packaged rice snack stored at 30 ℃ and 75% RH, 30 ℃ and 85% RH and 40 ℃ and 75% RH, comparable to tropical storage conditions. The MLP predicted shelf lives were then compared to the actual shelf lives. Using MLP algorithm, many factors could be incorporated into the model including food characteristics, package properties, and storage environments. The MLP neural network comprised an input layer, one hidden layer and an output layer. The network was trained using Lavenberg-Marquardt (LM) algorithm. The performance of a MLP neural network was measured using regression coefficient (R~2) and mean squared error (MSE). The MLP algorithm gave R~2 of 0.98, and MSE of 0.12. MLP offers several advantages over conventional digital computations, including faster speed of information processing, learning ability, fault tolerance, and multi-output ability.
机译:建立了一种包装水分敏感零食的保质期预测新方法。开发了基于多层感知器(MLP)和反向传播算法的人工神经网络(ANN),以预测包装的米饭零食在30℃和75%RH,30℃和85%RH和40℃和75%RH下存储的货架期,可与热带储存条件媲美。然后将MLP预测的保质期与实际保质期进行比较。使用MLP算法,可以将许多因素纳入模型,包括食品特性,包装属性和存储环境。 MLP神经网络包括一个输入层,一个隐藏层和一个输出层。该网络使用Lavenberg-Marquardt(LM)算法进行了训练。使用回归系数(R〜2)和均方误差(MSE)来测量MLP神经网络的性能。 MLP算法的R〜2为0.98,MSE为0.12。与传统的数字计算相比,MLP具有许多优势,包括信息处理速度更快,学习能力,容错能力和多输出能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号