首页> 外文期刊>Expert Systems with Application >Scent classification by K nearest neighbors using ion-mobility spectrometry measurements
【24h】

Scent classification by K nearest neighbors using ion-mobility spectrometry measurements

机译:使用离子迁移谱测量法按K个最近邻居的气味分类

获取原文
获取原文并翻译 | 示例

摘要

Various classifiers for scent classification based on measurements using an electronic nose (eNose) have been studied recently. In general, classifiers rely on a static database containing reference eNose measurements for known scents. However, most of these approaches require retraining of the classifier every time a new scent needs to be added to the training database. In this paper, the potential of a K nearest neighbors (KNN) classifier is investigated to avoid the time-consuming retraining when updating the database. To speed up classification, a k-dimensional tree search in the KNN classifier and principal component analysis (PCA) are studied. The tests with scents presented to an eNose based on ion-mobility spectrometry (IMS) show that the KNN method classifies scents with high accuracy. Using a k-dimensional tree search instead of an exhaustive search has no significant influence on the misclassification rate but reduces the classification time considerably. The use of PCA-transformed data results in a higher misclassification rate than the use of IMS data when only the first principal components explaining 95% of the total variance are used but in a similar misclassification rate when the first principal components explaining 99% of the total variance are used. In conclusion, the proposed method can be recommended for classifying scents measured with IMS-based eNoses. (C) 2018 Elsevier Ltd. All rights reserved.
机译:最近已经研究了用于基于使用电子鼻(eNose)的测量进行的气味分类的各种分类器。通常,分类器依赖于包含参考eNose测量值的静态数据库的已知气味。然而,每当需要将新的气味添加到训练数据库中时,大多数这些方法都需要对分类器进行再训练。在本文中,研究了K最近邻(KNN)分类器的潜力,以避免在更新数据库时耗时的重新训练。为了加快分类速度,研究了KNN分类器中的k维树搜索和主成分分析(PCA)。基于离子迁移谱(IMS)对eNose进行香气测试的结果表明,KNN方法可以高度准确地对香气进行分类。使用k维树搜索而不是穷举搜索对误分类率没有显着影响,但是会大大减少分类时间。当仅使用解释总方差的95%的第一主成分时,使用PCA转换数据会导致比使用IMS数据更高的错误分类率,但是当使用第一主成分解释了99%的总方差时,使用错误的分类率也相似。使用总方差。总之,可以建议使用该方法对使用基于IMS的eNoses测量的气味进行分类。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号