首页> 外文期刊>Expert Systems with Application >Aggregation in the analytic hierarchy process: Why weighted geometric mean should be used instead of weighted arithmetic mean
【24h】

Aggregation in the analytic hierarchy process: Why weighted geometric mean should be used instead of weighted arithmetic mean

机译:层次分析法中的聚合:为什么应使用加权几何平均值而不是加权算术平均值

获取原文
获取原文并翻译 | 示例

摘要

The main focus of this paper is the aggregation of local priorities into global priorities in the Analytic Hierarchy Process (AHP) method. We study two most frequently used aggregation approaches - the weighted arithmetic and weighted geometric means - and identify their strengths and weaknesses. We investigate the focus of the aggregation, the assumptions made on the way, and the effect of different normalizations of local priorities on the resulting global priorities and their ratios. We clearly show the superiority of the weighted geometric mean aggregation over the weighted arithmetic mean aggregation in AHP for the purpose of deriving global priorities of alternatives. We also contribute to the literature on rank reversal in AHP. In particular, we show that a change of the normalization condition for the local priorities of alternatives may result in different ranking when the weighted arithmetic mean aggregation is used for deriving global priorities of alternatives, and we demonstrate that the ranking obtained by the weighted geometric mean aggregation is not normalization dependent. Moreover, we prove that the ratios of global priorities of alternatives obtained by the weighted geometric mean aggregation are invariant under the normalization of local priorities of alternatives and weights of criteria. We also propose three alternative approaches to aggregating preference information contained in local pairwise comparison matrices of alternatives into a global consistent pairwise comparison matrix of alternatives and prove their equivalence. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文的主要重点是在层次分析法(AHP)中将本地优先级汇总为全局优先级。我们研究了两种最常用的聚合方法-加权算术和加权几何均值-并确定了它们的优缺点。我们调查了汇总的重点,方法上的假设以及本地优先级的不同规范化对所产生的全局优先级及其比率的影响。我们清楚地显示了AHP中加权几何平均聚合优于加权算术平均聚合,以求得替代方案的全局优先级。我们还为AHP中的排名逆转文献提供了帮助。尤其是,我们表明,当使用加权算术平均聚合导出替代方案的全局优先级时,替代方案的局部优先级的归一化条件的变化可能会导致不同的排名,并且我们证明了通过加权几何平均值获得的排名聚合不依赖于规范化。此外,我们证明了通过加权几何均值聚合获得的替代方案的全局优先级的比率在替代方案的局部优先级和标准权重归一化的情况下是不变的。我们还提出了三种备选方法,将备选方案的本地成对比较矩阵中包含的偏好信息聚合为备选方案的全局一致成对比较矩阵,并证明它们的等效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号