首页> 外文期刊>Expert Systems with Application >Universal affective model for Readers' emotion classification over short texts
【24h】

Universal affective model for Readers' emotion classification over short texts

机译:短文本读者情感分类的通用情感模型

获取原文
获取原文并翻译 | 示例

摘要

As the rapid development of Web 2.0 communities, social media service providers offer users a convenient way to share and create their own contents such as online comments, blogs, microblogs/tweets, etc. Understanding the latent emotions of such short texts from social media via the computational model is an important issue as such a model will help us to identify the social events and make better decisions (e.g., investment in stocking market). However, it is always very challenge to detect emotions from above user-generated contents due to the sparsity problem (e.g., a tweet is a short message). In this article, we propose an universal affective model (UAM) to classify readers' emotions over unlabeled short texts. Different from conventional text classification model, the UAM structurally consists of topic-level and term-level sub-models, and detects social emotions from the perspective of readers in social media. Through the evaluation on real-world data sets, the experimental results validate the effectiveness of the proposed model in terms of the effectiveness and accuracy. (C) 2018 Elsevier Ltd. All rights reserved.
机译:随着Web 2.0社区的快速发展,社交媒体服务提供商为用户提供了一种方便的方式来共享和创建自己的内容,例如在线评论,博客,微博/推文等。通过社交媒体了解此类短文本的潜在情感计算模型是一个重要的问题,因为这样的模型将帮助我们识别社交事件并做出更好的决策(例如,对股票市场的投资)。但是,由于稀疏性问题(例如,一条推文是一条短消息),从用户生成的内容上方检测情绪总是非常困难的。在本文中,我们提出了一种通用情感模型(UAM),可以根据未标记的短文本对读者的情绪进行分类。与传统的文本分类模型不同,UAM在结构上由主题级别和术语级别子模型组成,并从社交媒体读者的角度检测社交情绪。通过对现实世界数据集的评估,实验结果从有效性和准确性方面验证了所提模型的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号