首页> 外文期刊>Neurocomputing >Multi-label maximum entropy model for social emotion classification over short text
【24h】

Multi-label maximum entropy model for social emotion classification over short text

机译:短文本社交情感分类的多标签最大熵模型

获取原文
获取原文并翻译 | 示例

摘要

Social media provides an opportunity for many individuals to express their emotions online. Automatically classifying user emotions can help us understand the preferences of the general public, which has a number of useful applications, including sentiment retrieval and opinion summarization. Short text is prevalent on the Web, especially in tweets, questions, and news headlines. Most of the existing social emotion classification models focus on the detection of user emotions conveyed by long documents. In this paper, we introduce a multi-label maximum entropy (MME) model for user emotion classification over short text. MME generates rich features by modeling multiple emotion labels and valence scored by numerous users jointly. To improve the robustness of the method on varied-scale corpora, we further develop a co-training algorithm for MME and use the L-BFGS algorithm for the generalized MME model. Experiments on real-world short text collections validate the effectiveness of these methods on social emotion classification over sparse features. We also demonstrate the application of generated lexicons in identifying entities and behaviors that convey different social emotions. (C) 2016 Elsevier B.V. All rights reserved.
机译:社交媒体为许多人提供了一个在线表达情感的机会。对用户情绪进行自动分类可以帮助我们理解公众的偏爱,公众有很多有用的应用程序,包括情感检索和意见汇总。短文本在Web上很普遍,尤其是在推文,问题和新闻标题中。现有的大多数社会情感分类模型都集中在长文档传达的用户情感的检测上。在本文中,我们介绍了一种用于对短文本进行用户情感分类的多标签最大熵(MME)模型。 MME通过对多个用户共同评分的多个情感标签和价进行建模,从而生成丰富的功能。为了提高该方法在变尺度语料库上的鲁棒性,我们进一步开发了一种针对MME的协同训练算法,并将L-BFGS算法用于广义MME模型。现实世界中短文本集合的实验验证了这些方法对稀疏特征进行社会情感分类的有效性。我们还演示了生成的词典在识别传达不同社会情感的实体和行为中的应用。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号