首页> 外文期刊>Expert systems with applications >Evolutionary-based Feature Selection Approaches With New Criteria For Data Mining: A Case Study Of Credit Approval Data
【24h】

Evolutionary-based Feature Selection Approaches With New Criteria For Data Mining: A Case Study Of Credit Approval Data

机译:具有新数据挖掘标准的基于进化的特征选择方法:以信贷审批数据为例

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the feature selection problem was formulated as a multi-objective optimization problem, and new criteria were proposed to fulfill the goal. Foremost, data were pre-processed with missing value replacement scheme, re-sampling procedure, data type transformation procedure, and min-max normalization procedure. After that a wide variety of classifiers and feature selection methods were conducted and evaluated. Finally, the paper presented comprehensive experiments to show the relative performance of the classification tasks. The experimental results revealed the success of proposed methods in credit approval data. In addition, the numeric results also provide guides in selection of feature selection methods and classifiers in the knowledge discovery process.
机译:本文将特征选择问题表述为一个多目标优化问题,并提出了满足该目标的新准则。首先,使用缺失值替换方案,重采样过程,数据类型转换过程和最小-最大归一化过程对数据进行预处理。之后,进行了多种分类器和特征选择方法并进行了评估。最后,本文提出了综合实验,以显示分类任务的相对性能。实验结果表明,所提出的方法在信用批准数据中是成功的。此外,数值结果还为知识发现过程中特征选择方法和分类器的选择提供了指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号