首页> 外文期刊>Advanced engineering informatics >New hybrid data mining model for credit scoring based on feature selection algorithm and ensemble classifiers
【24h】

New hybrid data mining model for credit scoring based on feature selection algorithm and ensemble classifiers

机译:基于特征选择算法和集合分类的信用评分新混合数据挖掘模型

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to propose a new hybrid data mining model based on combination of various feature selection and ensemble learning classification algorithms, in order to support decision making process. The model is built through several stages. In the first stage, initial dataset is preprocessed and apart of applying different preprocessing techniques, we paid a great attention to the feature selection. Five different feature selection algorithms were applied and their results, based on ROC and accuracy measures of logistic regression algorithm, were combined based on different voting types. We also proposed a new voting method, called if_any, that outperformed all other voting methods, as well as a single feature selection algorithm's results. In the next stage, a four different classification algorithms, including generalized linear model, support vector machine, naive Bayes and decision tree, were performed based on dataset obtained in the feature selection process. These classifiers were combined in eight different ensemble models using soft voting method. Using the real dataset, the experimental results show that hybrid model that is based on features selected by if_any voting method and ensemble GLM + DT model performs the highest performance and outperforms all other ensemble and single classifier models.
机译:本文的目的是提出基于各种特征选择和集合学习分类算法的组合的新的混合数据挖掘模型,以支持决策过程。该模型通过多个阶段构建。在第一阶段,初始数据集是预处理的,并且除了应用不同的预处理技术,我们非常重视特征选择。应用了五种不同的特征选择算法及其基于逻辑回归算法的ROC和精度测量的结果,基于不同的投票类型组合。我们还提出了一种新的投票方法,称为if_any,这优于所有其他投票方法,以及单个特征选择算法的结果。在下一阶段,基于在特征选择过程中获得的数据集执行四种不同的分类算法,包括广义线性模型,支持向量机,天真凸鸟和决策树。这些分类器在八种不同的集合模型中组合使用软票方法。使用真实数据集,实验结果表明,基于IF_ANY投票方法和集合GLM + DT模型选择的特征的混合模型执行最高性能,优于所有其他集合式和单分类器模型。

著录项

  • 来源
    《Advanced engineering informatics》 |2020年第8期|101130.1-101130.9|共9页
  • 作者单位

    Faculty of Electrical Engineering Computer Science and Information Technology Osijek J.J. Strossmayer University of Osijek KnezaTrpimira 2b 31000 Osijek Croatia;

    Faculty of Electrical Engineering Computer Science and Information Technology Osijek J.J. Strossmayer University of Osijek KnezaTrpimira 2b 31000 Osijek Croatia;

    Faculty of Electrical Engineering Computer Science and Information Technology Osijek J.J. Strossmayer University of Osijek KnezaTrpimira 2b 31000 Osijek Croatia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Credit scoring; Data mining; Ensemble classifier; Feature selection; Hybrid model;

    机译:信用评分;数据挖掘;合奏分类器;特征选择;混合模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号