首页> 外文期刊>Expert systems with applications >Automatic Recognition Of Cognitive Fatigue From Physiological Indices By Using Wavelet Packet Transform And Kernel Learning Algorithms
【24h】

Automatic Recognition Of Cognitive Fatigue From Physiological Indices By Using Wavelet Packet Transform And Kernel Learning Algorithms

机译:小波包变换和核学习算法从生理指标自动识别认知疲劳

获取原文
获取原文并翻译 | 示例

摘要

Cognitive fatigue is an extremely sophisticated phenomenon, which is influenced by the environment, the state of health, vitality, and the capability of recovery. A single parameter can not fully describe it. In this paper, power spectral indices of HRV and wavelet packet parameters of EEG are firstly combined to analyze the impacts of long time switch task on autonomic nervous system and central nervous system. Then wavelet packet parameters of EEG are extracted as the features of brain activity in different cognitive fatigue state, kernel principal component analysis (KPCA) and support vector machine (SVM) are jointly applied to differentiate two states. The experimental results show that the predominant activity of autonomic nervous system of subjects turns to the sympathetic activity from parasympathetic activity after the task. The wavelet packet parameters of EEG are strongly related with cognitive fatigue. Moreover, the joint KPCA-SVM method is able to effectively reduce the dimensionality of the feature vectors, speed up the convergence in the training of SVM and achieve higher recognition accuracy (90.04%) of cognitive fatigue state. The KPCA-SVM method could be a promising tool for the evaluation of cognitive fatigue.
机译:认知疲劳是一种极其复杂的现象,受环境,健康状况,活力和恢复能力的影响。单个参数不能完全描述它。本文首先将HRV的功率谱指数与EEG的小波包参数结合起来,分析了长时间切换任务对自主神经系统和中枢神经系统的影响。然后提取脑电信号的小波包参数作为不同认知疲劳状态下脑部活动的特征,联合应用核主成分分析(KPCA)和支持向量机(SVM)来区分两种状态。实验结果表明,受试者的自主神经系统的主要活动从任务后的副交感活动转变为交感活动。脑电信号的小波包参数与认知疲劳密切相关。此外,联合KPCA-SVM方法能够有效降低特征向量的维数,加快SVM训练的收敛速度,并获得较高的认知疲劳状态识别率(90.04%)。 KPCA-SVM方法可能是评估认知疲劳的有前途的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号