首页> 外文期刊>Expert systems with applications >Applying enhanced data mining approaches in predicting bank performance: A case of Taiwanese commercial banks
【24h】

Applying enhanced data mining approaches in predicting bank performance: A case of Taiwanese commercial banks

机译:应用增强的数据挖掘方法预测银行绩效:以台湾商业银行为例

获取原文
获取原文并翻译 | 示例

摘要

The prediction of bank performance is an important issue. The bad performance of banks may first result in bankruptcy, which is expected to influence the economics of the country eventually. Since the early 1970s, many researchers had already made predictions on such issues. However, until recent years, most of them have used traditional statistics to build the prediction model. Because of the vigorous development of data mining techniques, many researchers have begun to apply those techniques to various fields, including performance prediction systems. However, data mining techniques have the problem of parameter settings. Therefore, this study applies particle swarm optimization (PSO) to obtain suitable parameter settings for support vector machine (SVM) and decision tree (DT), and to select a subset of beneficial features, without reducing the classification accuracy rate. In order to evaluate the proposed approaches, dataset collected from Taiwanese commercial banks are used as source data. The experimental results showed that the proposed approaches could obtain a better parameter setting, reduce unnecessary features, and improve the accuracy of classification significantly.
机译:银行业绩的预测是一个重要的问题。银行的不良业绩可能首先导致破产,预计最终将影响该国的经济。自1970年代初以来,许多研究人员已经对此类问题做出了预测。但是,直到最近几年,他们中的大多数人都使用传统统计数据来建立预测模型。由于数据挖掘技术的蓬勃发展,许多研究人员已开始将这些技术应用于各个领域,包括性能预测系统。但是,数据挖掘技术存在参数设置的问题。因此,本研究应用粒子群优化(PSO)获得支持向量机(SVM)和决策树(DT)的合适参数设置,并选择有益特征的子集,而不会降低分类准确率。为了评估提议的方法,将从台湾商业银行收集的数据集用作源数据。实验结果表明,所提出的方法能够获得较好的参数设置,减少不必要的特征,并显着提高分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号