首页> 外文期刊>Expert systems with applications >Kaapro: An Approach Of Protein Secondary Structure Prediction Based On Kdd~* In The Compound Pyramid Prediction Model
【24h】

Kaapro: An Approach Of Protein Secondary Structure Prediction Based On Kdd~* In The Compound Pyramid Prediction Model

机译:Kaapro:在复合金字塔预测模型中基于Kdd〜*的蛋白质二级结构预测方法

获取原文
获取原文并翻译 | 示例

摘要

The problem of protein secondary structure prediction is one of the most important problems in Bioin-formatics. After the study of this problem for 30 years and more, there have been some breakthroughs. Especially, the introduction of ensemble prediction model and hybrid prediction model makes the accuracy of prediction better, but there is a long distance to induce the tertiary structures from the secondary ones. As one of the extension researches of KDTICM [Bingru, Yang (2004). Knowledge discovery based on theory of inner cognition mechanism and application. Beijing: Electronic Industry Press] theory, this paper proposed a method KAAPRO, which is based on Maradbcm algorithm which is induced by KDD~* model and combined with CBA, for protein secondary structure prediction. And a gradually enhanced, multilayer systematic prediction model, compound pyramid model, is proposed. The kernel of this model is KAAPRO. Domain knowledge is used through the whole model, and the physical-chemical attributes are chosen by causal cellular automata. In the experiment, the test proteins used in reference Muggleton et al. (Muggleton, S. H., King, R., Sternberg, M. (1992). Protein secondary structure prediction using logic-based machine learning. Protein Engineering, 5(7), 647-657) are predicted. The structures of amino acids, whose structural traits are obscure, are predicted well by KAAPRO. Hence, the result of this model is satisfying too.
机译:蛋白质二级结构预测问题是生物信息学中最重要的问题之一。经过三十多年的研究,取得了一些突破。特别是,集合预测模型和混合预测模型的引入使预测的准确性更好,但是从二级结构中引入三级结构的距离还很长。作为KDTICM的扩展研究之一[Bingru,Yang(2004)。基于内在认知机制理论的知识发现及其应用。北京:电子工业出版社],本文提出了一种基于Maradbcm算法的KAAPRO方法,该方法由KDD〜*模型引入,并与CBA结合,用于蛋白质二级结构预测。提出了一种逐步增强的多层系统预测模型,即复合金字塔模型。该模型的内核是KAAPRO。在整个模型中使用领域知识,并通过因果细胞自动机选择物理化学属性。在实验中,测试蛋白质用于参考Muggleton等。 (Muggleton,S.H.,King,R.,Sternberg,M。(1992)。使用基于逻辑的机器学习的蛋白质二级结构预测。ProteinEngineering,5(7),647-657)。 KAAPRO可以很好地预测其氨基酸结构特征不清楚的氨基酸结构。因此,该模型的结果也令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号