首页> 外文期刊>Expert systems with applications >Improving Forecasts Of Garch Family Models With The Artificial Neural Networks: An Application To The Daily Returns In Istanbul Stock Exchange
【24h】

Improving Forecasts Of Garch Family Models With The Artificial Neural Networks: An Application To The Daily Returns In Istanbul Stock Exchange

机译:用人工神经网络改进Garch家庭模型的预测:在伊斯坦布尔证券交易所每日收益中的应用

获取原文
获取原文并翻译 | 示例

摘要

In the study, we discussed the ARCH/GARCH family models and enhanced them with artificial neural networks to evaluate the volatility of daily returns for 23.10.1987-22.02.2008 period in Istanbul Stock Exchange. We proposed ANN-APGARCH model to increase the forecasting performance of APGARCH model. The ANN-extended versions of the obtained GARCH models improved forecast results. It is noteworthy that daily returns in the ISE show strong volatility clustering, asymmetry and nonlinearity characteristics.
机译:在研究中,我们讨论了ARCH / GARCH族模型,并通过人工神经网络对其进行了增强,以评估伊斯坦布尔证券交易所23.10.1987-22.02.2008期间的每日收益波动率。我们提出了ANN-APGARCH模型来提高APGARCH模型的预测性能。获得的GARCH模型的ANN扩展版本改善了预测结果。值得注意的是,ISE中的日收益率显示出强大的波动性聚集,不对称和非线性特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号