首页> 外文期刊>Expert systems with applications >A Study Of Fault Diagnosis In A Scooter Using Adaptive Order Tracking Technique And Neural Network
【24h】

A Study Of Fault Diagnosis In A Scooter Using Adaptive Order Tracking Technique And Neural Network

机译:基于自适应顺序跟踪技术和神经网络的踏板车故障诊断研究

获取原文
获取原文并翻译 | 示例

摘要

An expert system for scooter fault diagnosis using sound emission signals based on adaptive order tracking and neural networks is presented in this paper. The order tracking technique is one of the important approaches for fault diagnosis in rotating machinery. The different faults present different order figures and they can be used to determine the fault in mechanical systems. However, many breakdowns are hard to classify correctly by human experience in fault diagnosis. In the present study, the order tracking problem is treated as a parametric identification and the artificial neural network technique for classifying faults. First, the adaptive order tracking extract the order features as input for neural network in the proposed system. The neural networks are used to develop the training module and testing module. The artificial neural network techniques using a back-propagation network and a radial basis function network are proposed to develop the artificial neural network for fault diagnosis system. The performance of two techniques are evaluated and compared through experimental investigation. The experimental results indicated that the proposed system is effective for fault diagnosis under various engine conditions.
机译:提出了一种基于自适应顺序跟踪和神经网络的声发射信号踏板车故障诊断专家系统。顺序跟踪技术是旋转机械故障诊断的重要方法之一。不同的故障呈现不同的顺序图,它们可用于确定机械系统中的故障。但是,许多故障很难通过人类在故障诊断中的经验来正确分类。在本研究中,阶次跟踪问题被视为参数识别和人工神经网络技术来对故障进行分类。首先,自适应订单跟踪提取订单特征作为拟议系统中神经网络的输入。神经网络用于开发训练模块和测试模块。为了开发用于故障诊断系统的人工神经网络,提出了使用反向传播网络和径向基函数网络的人工神经网络技术。通过实验研究评估和比较了两种技术的性能。实验结果表明,该系统对于各种发动机工况下的故障诊断都是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号