首页> 外文期刊>Expert Systems with Application >Using AdaBoost classifiers in a hierarchical framework for classifying surface images of marble slabs
【24h】

Using AdaBoost classifiers in a hierarchical framework for classifying surface images of marble slabs

机译:在分层框架中使用AdaBoost分类器对大理石板的表面图像进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new hierarchical classification method based on the use of various types of AdaBoost clas-sification algorithms is proposed for automatic classification of marble slab images according to their quality. At first, features are extracted using the sum and difference histograms method and, at the sec-ond stage, different versions of the AdaBoost algorithms are used as classifiers together with those extracted features in a proposed hierarchical fashion. Performance of the proposed method is compared against performances of different types of neural network classifiers and a support vector machine (SVM) classifier. Computational results show that the proposed hierarchical structure employing AdaBoost algo-rithms performs superior to neural networks and the SVM classifier for classifying marble slab images in our large and diversified data set.
机译:本文提出了一种基于各种类型的AdaBoost分类算法的层次分类方法,根据大理石图像的质量对大理石图像进行自动分类。首先,使用和直方图和差异直方图方法提取特征,然后在第二阶段,将不同版本的AdaBoost算法与这些提取的特征一起以拟议的分层方式用作分类器。将该方法的性能与不同类型的神经网络分类器和支持向量机(SVM)分类器的性能进行了比较。计算结果表明,所提出的采用AdaBoost算法的层次结构在神经网络和SVM分类器上的性能优于神经网络和SVM分类器,可对我们庞大而分散的数据集中的大理石平板图像进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号