首页> 外文期刊>Expert systems with applications >Orthogonal linear discriminant analysis and feature selection for micro-array data classification
【24h】

Orthogonal linear discriminant analysis and feature selection for micro-array data classification

机译:正交线性判别分析和特征选择用于微阵列数据分类

获取原文
获取原文并翻译 | 示例

摘要

A novel method for micro-array data classification based on orthogonal linear discriminant analysis (ODA), sequential forward floating selection (SFFS) and support vector machine (SVM) is here proposed. In this paper, in order to avoid the constraint that the dimension of the ODA subspace is bounded by the number of classes, to increase the dimension of the subspace and to improve the accuracy, we combine the "original" features to obtain new features. We combine the features in groups of K, each new feature f is obtained by the projection that maps the K-dimensional feature space to a single dimension. A feature selection algorithm is applied to select the most relevant features. Since the new features space has only few hundreds of features an exhaustive wrapper feature selection approach is used to select the set of relevant features. Finally a radial basis function SVM is trained using these features.rnThe obtained results are very encouraging, they improve the average predictive accuracy obtained using standard feature transform techniques.rnParticularly interesting are the results on a breast cancer dataset, to the best of our knowledge the proposed method is the first method that, using the genes information, permits to determine with high accuracy if a person might benefit from adjuvant chemotherapy.
机译:提出了一种基于正交线性判别分析(ODA),顺序前向浮选(SFFS)和支持向量机(SVM)的微阵列数据分类新方法。在本文中,为了避免ODA子空间的维数受类数的限制,为了增加子空间的维数并提高准确性,我们结合了“原始”特征以获得新特征。我们将特征组合为K组,每个新特征f是通过将K维特征空间映射到单个维的投影获得的。应用特征选择算法来选择最相关的特征。由于新要素空间只有几百个要素,因此使用了详尽的包装器要素选择方法来选择相关要素的集合。最后使用这些特征训练径向基函数SVM.rn获得的结果非常令人鼓舞,它们提高了使用标准特征变换技术获得的平均预测准确性.rn据我们所知,特别有趣的是乳腺癌数据集上的结果。提出的方法是第一种利用基因信息可以高精度确定一个人是否可以从辅助化疗中受益的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号