首页> 外文期刊>Expert systems with applications >Improving algorithms for structure learning in Bayesian Networks using a new implicit score
【24h】

Improving algorithms for structure learning in Bayesian Networks using a new implicit score

机译:使用新的隐式得分改进贝叶斯网络中的结构学习算法

获取原文
获取原文并翻译 | 示例

摘要

Learning Bayesian Network structure from database is an NP-hard problem and still one of the most exciting challenges in machine learning. Most of the widely used heuristics search for the (locally) optimal graphs by defining a score metric and employs a search strategy to identify the network structure having the maximum score. In this work, we propose a new score (named implicit score) based on the Implicit inference framework that we proposed earlier. We then implemented this score within the K2 and MWST algorithms for network structure learning. Performance of the new score metric was evaluated on a benchmark database (ASIA Network) and a biomedical database of breast cancer in comparison with traditional score metrics BIC and BD Mutual Information. We show that implicit score yields improved performance over other scores when used with the MWST algorithm and have similar performance when implemented within K2 algorithm.
机译:从数据库中学习贝叶斯网络结构是一个NP难题,仍然是机器学习中最令人兴奋的挑战之一。大多数广泛使用的启发式搜索通过定义得分度量来搜索(局部)最佳图,并采用搜索策略来识别具有最大得分的网络结构。在这项工作中,我们根据之前提出的隐式推理框架提出了一个新的分数(称为隐式分数)。然后,我们在网络结构学习的K2和MWST算法中实现了此分数。与传统的评分指标BIC和BD Mutual Information相比,在基准数据库(ASIA Network)和乳腺癌生物医学数据库上评估了新评分指标的性能。我们显示,与MWST算法一起使用时,隐式得分比其他得分具有更高的性能,而在K2算法中实施时,隐性得分具有相似的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号