首页> 外文期刊>Pattern recognition letters >An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering
【24h】

An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering

机译:一种改进的用于学习贝叶斯网络的聚类贝叶斯结构EM算法

获取原文
获取原文并翻译 | 示例

摘要

The application of the Bayesian Structural EM algorithm to learn Bayesian networks (BNs) for clustering implies a search over the space of BN structures alternating between two steps f an optimization of the BN parameters (usually by means of the EM algorithm) and a structural search for model selection. In this paper, we propose to perform the optimization of the BN parameters using an alternative approach to the EM algorithm : the BC + EM method. We provide experimental results to show that our proposal results in a more effective and efficient version of the Bayesian Structural EM algorithm for learning BNs for clustering.
机译:贝叶斯结构EM算法用于学习用于聚类的贝叶斯网络(BNs)的应用意味着对BN结构空间的搜索在两个步骤之间交替进行,即BN参数的优化(通常通过EM算法)和结构搜索用于模型选择。在本文中,我们建议使用EM算法的另一种方法:BC + EM方法来执行BN参数的优化。我们提供的实验结果表明,我们的建议导致了一种用于学习聚类的BN的贝叶斯结构EM算法的更有效版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号