首页> 外文期刊>Expert systems with applications >Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis
【24h】

Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis

机译:便携式手运动分类器,用于基于灰色关联分析的多通道表面肌电图识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes the portable hand motion classifier (HMC) for multi-channel surface electromyography (SEMG) recognition using grey relational analysis (GRA). SEMG provides information on motion detection of flexion and extension of fingers, wrist, forearm, and arm. A portable HMC is developed to identify hand motion from the SEMG signals with an electrode configuration system (ECS) and GRA-based classifier. The ECS consists of seven active electrodes place around the forearm to acquire the multi-channel SEMG signals of corresponding muscle groups. Six parameters are extracted from each electrode channel and various 42 (7 Channels by 6 Parameters) parameters could be constructed as specific patterns. Sequentially, these patterns are sent to the GRA-based classifier to recognize 11 hand motions. Twelve subjects including eight males and four females participate in this study. Compared with the multi-layer neural networks (MLNNs) based classifier, GRA demonstrates the processing time, computational efficiency, and accurate recognition for recognizing SEMG signals. It takes about 0.05 s CPU time to identify each hand motion which is close to a real-time process. Therefore, the GRA-based classifier could be further recommend to implement in prosthesis control, robotic manipulator or hand motion classification applications.
机译:本文提出了一种利用灰色关联分析(GRA)进行多通道表面肌电(SEMG)识别的便携式手运动分类器(HMC)。 SEMG提供有关手指,手腕,前臂和手臂弯曲和伸展的运动检测信息。开发了便携式HMC,可通过电极配置系统(ECS)和基于GRA的分类器从SEMG信号中识别手部动作。 ECS由位于前臂周围的七个有源电极组成,以获取相应肌肉群的多通道SEMG信号。从每个电极通道中提取六个参数,可以将各种42个参数(7个通道乘以6个参数)构造为特定模式。依次将这些模式发送到基于GRA的分类器,以识别11种手势。十二名受试者包括八名男性和四名女性参加了这项研究。与基于多层神经网络(MLNN)的分类器相比,GRA演示了识别SEMG信号的处理时间,计算效率和准确识别。识别接近实时过程的每个手势大约需要0.05 s CPU时间。因此,可以进一步推荐基于GRA的分类器在假体控制,机器人操纵器或手部运动分类应用中实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号