首页> 外文期刊>Mathematical Problems in Engineering >Combining Independent Component and Grey Relational Analysis for the Real-Time System of Hand Motion Identification Using Bend Sensors and Multichannel Surface EMG
【24h】

Combining Independent Component and Grey Relational Analysis for the Real-Time System of Hand Motion Identification Using Bend Sensors and Multichannel Surface EMG

机译:基于弯曲传感器和多通道表面肌电图的独立组件和灰色关联分析相结合的手势实时识别系统

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a portable system for hand motion identification (HMI) using the features from data glove with bend sensors andmultichannel surface electromyography (SEMG). SEMG could provide the information ofmuscle activities indirectly for HMI. However it is difficult to discriminate the finger motion like extension of thumb and little finger just using SEMG; the data glove with five bend sensors is designed to detect finger motions in the proposed system. Independent component analysis (ICA) and grey relational analysis (GRA) are used to data reduction and the core of identification, respectively. Six features are extracted from each SEMG channel, and three features are computed from five bend sensors in the data glove. To test the feasibility of the system, this study quantitatively compares the classification accuracies of twenty hand motions collected from 10 subjects. Compared to the performance with a back-propagation neural network and only using GRA method, the proposed method provides equivalent accuracy (>85%) with three training sets and faster processing time (20ms). The results also demonstrate that ICA can effectively reduce the size of input features with GRA methods and, in turn, reduce the processing time with the low price of reduced identification rates.
机译:本文提出了一种便携式系统,用于利用手势传感器和多通道表面肌电图(SEMG)数据手套的功能进行手部动作识别(HMI)。 SEMG可以间接为HMI提供肌肉活动的信息。但是,仅使用SEMG很难区分手指的运动,如拇指和小指的伸展。具有五个弯曲传感器的数据手套旨在检测所建议系统中的手指运动。独立成分分析(ICA)和灰色关联分析(GRA)分别用于数据缩减和识别的核心。从每个SEMG通道提取六个特征,并从数据手套中的五个弯曲传感器计算三个特征。为了测试该系统的可行性,本研究定量比较了从10个受试者中收集的20种手部动作的分类准确性。与仅使用GRA方法的反向传播神经网络的性能相比,该方法通过三个训练集和更快的处理时间(20ms)可以提供等效精度(> 85%)。结果还表明,ICA可以使用GRA方法有效地减小输入特征的大小,进而以较低的识别率降低了价格,从而减少了处理时间。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第15期|329783.1-329783.9|共9页
  • 作者

    Chen Pei-Jarn; Du Yi-Chun;

  • 作者单位

    Southern Taiwan Univ Sci & Technol, Dept Elect Engn, Tainan 71005, Taiwan.;

    Southern Taiwan Univ Sci & Technol, Dept Elect Engn, Tainan 71005, Taiwan.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号