首页> 外文期刊>Expert systems with applications >A class possibility based kernel to increase classification accuracy for small data sets using support vector machines
【24h】

A class possibility based kernel to increase classification accuracy for small data sets using support vector machines

机译:基于类可能性的内核,使用支持向量机提高小数据集的分类准确性

获取原文
获取原文并翻译 | 示例

摘要

Appropriate choice of kernels is the most important task when using kernel-based learning methods such as support vector machines. The current widely used kernels (such as polynomial kernel, Gaussian kernel, two-layer perceptron kernel, and so on) are all functional kernels for general purposes. Currently, there is no kernel proposed in a data-driven way. This paper proposes a new kernel generating method dependent on classifying related properties of the data structure itself. The new kernel concentrates on the similarity of paired data in classes, where the calculation of similarity is based on fuzzy theories. The experimental results with four medical data sets show that the proposed kernel has superior classification performance than polynomial and Gaussian kernels.
机译:在使用基于内核的学习方法(例如支持向量机)时,适当选择内核是最重要的任务。当前广泛使用的内核(例如多项式内核,高斯内核,两层感知器内核等)都是通用的功能内核。当前,没有以数据驱动的方式提出内核。本文提出了一种新的依赖于数据结构本身相关属性分类的内核生成方法。新内核着重于类中配对数据的相似性,其中相似性的计算基于模糊理论。四个医学数据集的实验结果表明,所提出的核具有比多项式和高斯核更好的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号