首页> 外文期刊>Expert systems with applications >Fault diagnosis for internal combustion engines using intake manifold pressure and artificial neural network
【24h】

Fault diagnosis for internal combustion engines using intake manifold pressure and artificial neural network

机译:基于进气歧管压力和人工神经网络的内燃机故障诊断

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an internal combustion engine fault diagnosis system using the manifold pressure of the intake system. The manifold pressure of the engine intake system always demonstrates the engine condition and affects the volumetric efficiency, fuel consumption and performance of internal combustion engines. Manifold pressure is well known to be detrimental to engine system stability and performance and it must be considered during regular maintenance. Conventional engine diagnostic technology using manifold pressure in intake system already exists through analyzing the differences between signals and depends on the experience of the technician. Obviously, the conventional detection is not a precise approach for manifold pressure detection when the engine in operation condition. In the present study, a system consisted of manifold pressure signal feature extraction using discrete wavelet transform (DWT) and fault recognition using the neural network technique is proposed. To verify the effect of the proposed system for identification, both the radial basis function network (RBFN) and generalized regression neural network (CRNN) are used and compared in this study. The experimental results indicated the proposed system using manifold pressure signal as data input is effective for engine fault diagnosis in the experimental engine platform.
机译:本文介绍了一种使用进气系统歧管压力的内燃机故障诊断系统。发动机进气系统的歧管压力始终显示发动机状况,并影响内燃机的容积效率,燃料消耗和性能。众所周知,歧管压力会损害发动机系统的稳定性和性能,因此必须在定期维护期间予以考虑。通过分析信号之间的差异,使用进气系统中歧管压力的常规发动机诊断技术已经存在,并且取决于技术人员的经验。显然,当发动机处于运行状态时,常规检测并不是用于歧管压力检测的精确方法。本文提出了一种由离散小波变换(DWT)提取歧管压力信号特征和利用神经网络技术进行故障识别的系统。为了验证所提出的系统进行识别的效果,在本研究中使用了径向基函数网络(RBFN)和广义回归神经网络(CRNN)进行了比较。实验结果表明,以歧管压力信号作为数据输入的拟议系统对实验发动机平台中的发动机故障诊断是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号