首页> 外文会议>Intelligent computing methodologies >Fault Diagnosis of Internal Combustion Engine Using Empirical Mode Decomposition and Artificial Neural Networks
【24h】

Fault Diagnosis of Internal Combustion Engine Using Empirical Mode Decomposition and Artificial Neural Networks

机译:基于经验模态分解和人工神经网络的内燃机故障诊断

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel approach has been proposed for fault diagnosis of internal combustion (IC) engine using Empirical Mode Decomposition (EMD) and Neural Network. Live signals from the engines were collected with and without faults by using four sensors. The vibration signals measured from the large number of faulty engines were decomposed into a number of Intrinsic Mode Functions (IMFs). Each IMF corresponds to a specific range of the frequency component embedded in the vibration signal. This paper proposes the use of EMD technique for finding IMFs. The Cumulative Mode Function (CMF) was chosen rather than IMFs since all the IMFs are not useful to reveal the vibration signal characteristics due to the effect of noise. Statistical parameters like shape factor, crest factor etc. of the envelope spectrum of CMF were investigated as an indicator for the presence of faults. These statistical parameters are used in turn for classification of faults using Neural Networks. Resilient Propagation which is a rapidly converging neural network algorithm is used for classification of faults. The accuracy obtained by using EMD-ANN technique effectively in IC engine diagnosis for various faults is more than 85% with each sensor. By using a majority voting approach 96% accuracy has been achieved in fault classification.
机译:本文提出了一种基于经验模态分解(EMD)和神经网络的内燃机故障诊断新方法。通过使用四个传感器,收集了来自发动机的实时信号,有无故障。从大量故障发动机测得的振动信号被分解为许多固有模式功能(IMF)。每个IMF对应于嵌入在振动信号中的频率分量的特定范围。本文提出了使用EMD技术查找IMF的方法。选择累积模式函数(CMF)而不是IMF,因为由于噪声的影响,所有IMF都无法显示振动信号的特性。研究了CMF包络谱的统计参数,如形状因数,波峰因数等,作为故障存在的指标。这些统计参数又用于使用神经网络对故障进行分类。弹性传播是一种快速收敛的神经网络算法,用于故障分类。通过有效地使用EMD-ANN技术对各种故障进行IC引擎诊断,每个传感器的准确度均超过85%。通过采用多数表决方法,故障分类的准确性达到了96%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号