首页> 外文期刊>Expert systems with applications >An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle
【24h】

An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle

机译:基于自适应神经模糊滑模的水下遥控车辆遗传算法控制系统

获取原文
获取原文并翻译 | 示例

摘要

This study presents an adaptive neuro-fuzzy sliding-mode-based genetic algorithm (ANFSGA) control system fora remotely operated vehicle (ROV) with four degrees of freedom (DOF)s. In many applications, ROVs will need to be capable of maneuvering to any given point, following object, and to be controllable from the surface. Therefore, an ANFSGA control system is introduced for tracking control of the ROV to achieve a high precision position control. Since the dynamic of ROVs are highly nonlinear and time varying, an ANFSGA control system is investigated according to direction-based genetic algorithm (GA) with the spirit of sliding mode control and adaptive neuro-fuzzy sliding mode (ANFS) based evolutionary procedure. In this way, on-line learning ability is employed to deal with the parametric uncertainty and disturbance by adjusting the ANFS inference parameters. In this proposed controller a GA control system is utilized to be the major controller, and stability can be indirectly insured by the concept of sliding mode control system without strict constraints and detailed system knowledge.
机译:这项研究为具有四个自由度(DOF)的遥控车辆(ROV)提出了一种基于自适应神经模糊滑模的遗传算法(ANFSGA)控制系统。在许多应用中,ROV将需要能够操纵到任意给定的点,跟随物体,并且可以从地面进行控制。因此,引入了ANFSGA控制系统来对ROV进行跟踪控制,以实现高精度的位置控制。由于ROV的动态性是高度非线性且随时间变化的,因此,本着基于滑模控制和基于自适应神经模糊滑模(ANFS)进化过程的精神,根据基于方向的遗传算法(GA)研究了ANFSGA控制系统。通过这种方式,可以通过调整ANFS推理参数来利用在线学习能力来处理参数不确定性和干扰。在该提出的控制器中,GA控制系统被用作主要控制器,并且可以通过滑模控制系统的概念间接地确保稳定性,而没有严格的约束和详细的系统知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号