首页> 外文期刊>Expert Systems with Application >Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine
【24h】

Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine

机译:基于ANFIS和鲁棒相关向量机的转炉炼钢动态控制模型。

获取原文
获取原文并翻译 | 示例

摘要

This study concerns with the control of basic oxygen furnace (BOF) steelmaking process and proposes a dynamic control model based on adaptive-network-based fuzzy inference system (ANFIS) and robust relevance vector machine (RRVM). The model aims to control the second blow period of BOF steelmaking and consists of two parts, the first of which is to calculate the values of control variables, viz., the amounts of oxygen and coolant requirement, and the other is to predict the endpoint carbon content and temperature of molten steel. In the first part, an ANFIS classifier is primarily constructed to determine whether coolant should be added or not, then an ANFIS regression model is utilized to calculate the amounts of oxygen and coolant. In the second part, a novel robust relevance vector machine is presented to predict the endpoint. RRVM solves the problem of sensitivity to outlier characteristic of classical relevance vector machine, thus obtaining higher prediction accuracy. The key idea of the proposed RRVM is to introduce individual noise variance coefficient to each training sample. In the process of training, the noise variance coefficients of outliers gradually decrease so as to reduce the impact of outliers and improve the robustness of the model. Simulations on industrial data show that the proposed dynamic control model yields good results on the oxygen and coolant calculation as well as endpoint prediction. It is promising to be utilized in practical BOF steelmaking process.
机译:该研究涉及基本氧气炉(BOF)炼钢工艺的控制,并提出了一种基于自适应网络的模糊推理系统(ANFIS)和鲁棒相关矢量机(RRVM)的动态控制模型。该模型旨在控制转炉炼钢的第二次吹炼期,由两部分组成,第一部分是计算控制变量的值,即氧气和冷却剂需求量,另一部分是预测终点碳含量和钢水温度。在第一部分中,首先构造ANFIS分类器来确定是否应添加冷却剂,然后使用ANFIS回归模型来计算氧气和冷却剂的量。在第二部分中,提出了一种新颖的鲁棒相关矢量机来预测终点。 RRVM解决了对经典相关矢量机离群特性的敏感性问题,从而获得了较高的预测精度。提出的RRVM的关键思想是向每个训练样本引入单独的噪声方差系数。在训练过程中,离群值的噪声方差系数逐渐减小,以减少离群值的影响,提高了模型的鲁棒性。对工业数据的仿真表明,所提出的动态控制模型在氧气和冷却剂的计算以及终点预测方面均取得了良好的效果。有望在实际的转炉炼钢工艺中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号