首页> 外文期刊>Expert Systems with Application >Outbound logistics exception monitoring: A multi-perspective ontologies' approach with intelligent agents
【24h】

Outbound logistics exception monitoring: A multi-perspective ontologies' approach with intelligent agents

机译:出站物流异常监视:智能代理的多角度本体方法

获取原文
获取原文并翻译 | 示例

摘要

Logistics consists of a complex network of organizations and processes where exception monitoring is critical for the success of logistics service. In order to detect exceptions effectively, exception monitoring requires proper understanding of the possible exceptions. However, the extant exception monitoring approaches or systems still lack sufficient emphasis in exceptions understanding. This paper presents a novel outbound logistics exception monitoring approach by incorporating multi-perspective ontologies and intelligent agents. Specially, the multi-perspective ontologies, involving static ontology, social ontology and dynamic ontology, are firstly employed to develop the taxonomy of the logistics exception, to reflect the situation dependencies of logistics exception and to represent the dynamic nature of business processes. From this point forwards, an outbound exception monitoring system is designed by introducing multi-intelligent agents, which can ensure autonomous, flexible, and collaborative exception monitor in logistics service. Finally, the presented approach and designed system are exhibited through a case study of two ubiquitous logistics exceptions, which indicates that the proposed multi-perspective ontologies provide better understanding of exceptions thereby enabling the designed outbound exception monitoring system to perform well.
机译:物流由复杂的组织和流程网络组成,其中异常监视对于物流服务的成功至关重要。为了有效检测异常,异常监视需要对可能的异常有适当的了解。但是,现有的异常监视方法或系统仍然缺乏对异常理解的足够重视。本文通过结合多角度的本体和智能代理,提出了一种新颖的出站物流异常监视方法。特别地,首先采用涉及静态本体,社会本体和动态本体的多视角本体来开发物流异常的分类法,以反映物流异常的态势依存关系,并代表业务流程的动态性质。从这一点出发,通过引入多智能代理设计出站异常监视系统,可以确保物流服务中的自治,灵活和协作异常监视。最后,通过对两个普遍存在的物流例外情况的案例研究展示了所提出的方法和设计的系统,这表明所提出的多角度本体论可以更好地理解例外情况,从而使设计的出站例外情况监视系统能够很好地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号